清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning End-to-End Approach for the Prediction of Tinnitus based on EEG Data.

计算机科学 深度学习 脑电图 人工智能 耳鸣 人工神经网络 机器学习 听力学 语音识别 循环神经网络 卷积神经网络 模式识别(心理学)
作者
Johannes Allgaier,Patrick Neff,Winfried Schlee,Stefan Schoisswohl,Rudiger Pryss
标识
DOI:10.1109/embc46164.2021.9629964
摘要

Tinnitus is attributed by the perception of a sound without any physical source causing the symptom. Symptom profiles of tinnitus patients are characterized by a large heterogeneity, which is a major obstacle in developing general treatments for this chronic disorder. As tinnitus patients often report severe constraints in their daily life, the lack of general treatments constitutes such a challenge that patients crave for any kind of promising method to cope with their tinnitus, even if it is not based on evidence. Another drawback constitutes the lack of objective measurements to determine the individual symptoms of patients. Many data sources are therefore investigated to learn more about the heterogeneity of tinnitus patients in order to develop methods to measure the individual situation of patients more objectively. As research assumes that tinnitus is caused by processes in the brain, electroencephalography (EEG) data are heavily investigated by researchers. Following this, we address the question whether EEG data can be used to classify tinnitus using a deep neural network. For this purpose, we analyzed 16,780 raw EEG samples from 42 subjects (divided into tinnitus patients and control group), with a duration of one second per sample. Four different procedures (with or without noise reduction and down-sampling or up-sampling) for automated preprocessing were used and compared. Subsequently, a neural network was trained to classify whether a sample refers to a tinnitus patient or the control group. We obtain a maximum accuracy in the test set of 75.6% using noise reduction and down-sampling. Our findings highlight the potential of deep learning approaches to detect EEG patterns for tinnitus patients as they are difficult to be recognized by humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
澜生完成签到 ,获得积分10
40秒前
Barid完成签到,获得积分10
40秒前
大米小米锅锅完成签到 ,获得积分10
50秒前
wujiwuhui完成签到 ,获得积分10
59秒前
烟花应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
平常的毛豆应助Ana采纳,获得30
1分钟前
稻子完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
深情安青应助vanHaren采纳,获得10
2分钟前
3分钟前
vanHaren发布了新的文献求助10
3分钟前
vanHaren完成签到,获得积分10
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
知行者完成签到 ,获得积分10
3分钟前
cadcae完成签到,获得积分10
3分钟前
义气雁完成签到 ,获得积分10
4分钟前
jjj完成签到 ,获得积分10
4分钟前
西红柿不吃皮完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
自然之水完成签到,获得积分10
5分钟前
心静自然好完成签到 ,获得积分10
5分钟前
earthai完成签到,获得积分10
5分钟前
彩色映雁完成签到 ,获得积分10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
asdwind完成签到,获得积分10
5分钟前
抹茶小汤圆完成签到 ,获得积分10
5分钟前
疯狂的迪子完成签到 ,获得积分10
6分钟前
神勇的天问完成签到 ,获得积分10
6分钟前
六一完成签到 ,获得积分10
6分钟前
易水寒完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
6分钟前
budingman发布了新的文献求助30
6分钟前
林夕完成签到 ,获得积分10
6分钟前
青出于蓝蔡完成签到,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468