Predictors for extubation failure in COVID-19 patients using a machine learning approach

医学 切断 重症监护 2019年冠状病毒病(COVID-19) 病危 急诊医学 重症监护医学 人口统计学的 生命体征 沙发评分 内科学 麻醉 人口学 传染病(医学专业) 疾病 社会学 物理 量子力学
作者
Lucas M. Fleuren,Tariq A. Dam,Michele Tonutti,Daan P. de Bruin,Ali el Hassouni,Diederik Gommers,Olaf L. Cremer,Rob J. Bosman,Sander Rigter,Evert‐Jan Wils,Tim Frenzel,Dave A. Dongelmans,Remko de Jong,Marco Peters,Marlijn J. A. Kamps,Dharmanand Ramnarain,Ralph Nowitzky,Fleur G. C. A. Nooteboom,Wouter de Ruijter,Louise C. Urlings‐Strop,Ellen G. M. Smit,D. Jannet Mehagnoul‐Schipper,Tom Dormans,Cornelis P. C. de Jager,Stefaan H. A. Hendriks,Sefanja Achterberg,Evelien Oostdijk,Auke C. Reidinga,Barbara Festen‐Spanjer,Gert B. Brunnekreef,Alexander D. Cornet,Walter van den Tempel,Age D. Boelens,Peter Koetsier,Judith Lens,Harald J. Faber,A. Karakus,Robert Entjes,P. de Jong,Thijs C. D. Rettig,M. Sesmu Arbous,Sebastiaan J. J. Vonk,Mattia Fornasa,Tomas Machado,Taco Houwert,Hidde Hovenkamp,Roberto Noorduijn Londono,Davide Quintarelli,Martijn G. Scholtemeijer,Aletta A. de Beer,Giovanni Cinà,Adam Kantorik,Tom de Ruijter,Willem E. Herter,Martijn Beudel,Armand R. J. Girbes,Mark Hoogendoorn,Patrick Thoral,Paul Elbers,Julia Koeter,Roger van Rietschote,M. C. Reuland,Laura van Manen,Leon J. Montenij,Jasper van Bommel,Roy van den Berg,Ellen van Geest,Anisa Hana,Bas van den Bogaard,Peter Pickkers,Pim van der Heiden,Claudia van Gemeren,Arend Jan Meinders,Martha de Bruin,Emma Rademaker,Frits van Osch,Martijn D. de Kruif,Nicolas F. Schroten,Klaas Sierk Arnold,Jan-Willem Fijen,Jacomar J. M. van Koesveld,Koen S. Simons,Joost A. M. Labout,Bart van de Gaauw,Michael Kuiper,Albertus Beishuizen,Dennis Geutjes,Johan Lutisan,Bart Grady,Remko van den Akker,Tom A. Rijpstra,Wim Janssens,Daniël Pretorius,Menno Beukema,Bram Simons,A. A. Rijkeboer,Marcel Ariës,Niels C. Gritters van den Oever,Martijn van Tellingen,Annemieke Dijkstra
出处
期刊:Critical Care [BioMed Central]
卷期号:25 (1) 被引量:24
标识
DOI:10.1186/s13054-021-03864-3
摘要

Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19.We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots.A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure.The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四斤瓜完成签到 ,获得积分10
刚刚
卖萌的秋田完成签到,获得积分10
1秒前
材料化学左亚坤完成签到,获得积分10
1秒前
心木完成签到 ,获得积分10
1秒前
2秒前
4秒前
涵泽发布了新的文献求助10
5秒前
6秒前
zhuzhu007完成签到,获得积分10
6秒前
大力洋葱完成签到,获得积分10
8秒前
9秒前
小白兔完成签到 ,获得积分10
9秒前
积极以云发布了新的文献求助10
11秒前
梦巷完成签到 ,获得积分10
12秒前
刻苦问凝完成签到,获得积分10
12秒前
顺心的定帮完成签到 ,获得积分10
14秒前
项之桃完成签到,获得积分10
14秒前
大熊完成签到 ,获得积分10
14秒前
小鱼鱼Fish完成签到,获得积分10
15秒前
15秒前
呜呼完成签到,获得积分10
15秒前
16秒前
18秒前
19秒前
xiaosun完成签到,获得积分10
21秒前
听风完成签到,获得积分10
21秒前
21秒前
22秒前
积极以云完成签到,获得积分10
22秒前
changfox完成签到,获得积分10
22秒前
CipherSage应助cjh采纳,获得10
24秒前
xiaosun发布了新的文献求助10
25秒前
甜蜜发带完成签到 ,获得积分10
26秒前
勤恳的不二完成签到,获得积分10
26秒前
大模型应助T拐拐采纳,获得10
26秒前
li发布了新的文献求助30
27秒前
乐观小之完成签到,获得积分0
29秒前
29秒前
香蕉寒梅完成签到,获得积分10
30秒前
彭于晏应助富强民主采纳,获得10
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729