Delineation of cultivated land parcels based on deep convolutional networks and geographical thematic scene division of remotely sensed images

专题地图 计算机科学 数字化 遥感 人工智能 信息抽取 卷积神经网络 师(数学) 深度学习 边界(拓扑) 分割 地理 地图学 计算机视觉 数学 算术 数学分析
作者
Lu Xu,Dongping Ming,Tongyao Du,Yangyang Chen,Dehui Dong,Chenghu Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106611-106611 被引量:40
标识
DOI:10.1016/j.compag.2021.106611
摘要

Extraction of cultivated land information from high spatial resolution remote sensing images is increasingly becoming an important approach to digitization and informatization in modern agriculture. The continuous development of deep learning technology has made it possible to extract information of cultivated land parcels by an intelligent way. Aiming at fine extraction of cultivated land parcels within large areas, this article builds a framework of geographical thematic scene division according to the rule of territorial differentiation in geography. A deep learning semantic segmentation network, improved U-net with depthwise separable convolution (DSCUnet), is proposed to achieve the division of the whole image. Then, an extended multichannel richer convolutional features (RCF) network is involved to delineate the boundaries of cultivated land parcels from agricultural functional scenes obtained by the former step. In order to testify the feasibility and effectiveness of the proposed methods, this article implemented experiments using Gaofen-2 images with different spatial resolution. The results show an outstanding performance using methods proposed in this article in both dividing agricultural functional scenes and delineating cultivated land parcels compared with other commonly used methods. Meanwhile, the extraction results have the highest accuracy in both the traditional evaluation indices (like Precision, Recall, F1, and IoU) and geometric boundary precision of cultivated land parcels. The methods in this article can provide a feasible solution to the problem of finely extracting cultivated land parcels information within large areas and complex landscape conditions in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
赵森完成签到,获得积分20
1秒前
2秒前
LLLLLLLL发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
HHHAN发布了新的文献求助10
5秒前
5秒前
liu发布了新的文献求助10
7秒前
樱偶猫发布了新的文献求助10
8秒前
CAOHOU给LL的求助进行了留言
8秒前
Chen完成签到 ,获得积分10
9秒前
9秒前
超级菠菠完成签到,获得积分10
10秒前
Yang发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
西北孤傲的狼完成签到,获得积分10
12秒前
英俊的铭应助ylj采纳,获得10
15秒前
yitonghan发布了新的文献求助10
15秒前
mi完成签到,获得积分10
15秒前
Astronaut完成签到,获得积分10
18秒前
chen完成签到,获得积分20
18秒前
18秒前
颜凡桃完成签到,获得积分10
19秒前
19秒前
飞阳完成签到,获得积分10
21秒前
22秒前
Astronaut发布了新的文献求助20
22秒前
ding应助研友_LJGoXn采纳,获得10
22秒前
23秒前
裴仰纳发布了新的文献求助10
23秒前
野性的曼香完成签到,获得积分10
24秒前
24秒前
26秒前
27秒前
羊羊羊完成签到,获得积分10
28秒前
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977850
求助须知:如何正确求助?哪些是违规求助? 3522015
关于积分的说明 11211196
捐赠科研通 3259254
什么是DOI,文献DOI怎么找? 1799573
邀请新用户注册赠送积分活动 878417
科研通“疑难数据库(出版商)”最低求助积分说明 806899