Deep Learning Face Attributes in the Wild

计算机科学 人工智能 面子(社会学概念) 模式识别(心理学) 边距(机器学习) 面部识别系统 代表(政治) 跳跃式监视 图像(数学) 对象(语法) 最小边界框 深度学习 计算机视觉 机器学习 社会学 政治 法学 社会科学 政治学
作者
Ziwei Liu,Ping Luo,Xiaogang Wang,Xiaoou Tang
标识
DOI:10.1109/iccv.2015.425
摘要

Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TillySss完成签到,获得积分10
刚刚
科研助手6应助青稚采纳,获得10
1秒前
2秒前
2秒前
3秒前
珈砾完成签到 ,获得积分10
3秒前
端庄新烟完成签到,获得积分10
3秒前
DumBell完成签到,获得积分10
3秒前
3秒前
思源应助伍子丐的猫采纳,获得10
4秒前
orixero应助chu采纳,获得30
4秒前
赘婿应助Pinocchio采纳,获得10
4秒前
水凝胶发布了新的文献求助10
4秒前
头与木完成签到,获得积分10
5秒前
5秒前
5秒前
cdercder应助123采纳,获得10
5秒前
5秒前
天云发布了新的文献求助30
6秒前
xmz应助11采纳,获得10
6秒前
GOUGOU2022发布了新的文献求助10
6秒前
wjw发布了新的文献求助10
7秒前
7秒前
小八发布了新的文献求助10
8秒前
科研通AI5应助快乐小子采纳,获得10
8秒前
9秒前
Zhou完成签到,获得积分10
9秒前
汉堡包应助Jun采纳,获得10
9秒前
小帮手发布了新的文献求助10
10秒前
10秒前
10秒前
Kiki完成签到,获得积分10
11秒前
懒居居完成签到,获得积分10
11秒前
11秒前
11秒前
nmm1111发布了新的文献求助10
11秒前
oysp完成签到,获得积分10
12秒前
13秒前
ningluo发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793624
求助须知:如何正确求助?哪些是违规求助? 3338571
关于积分的说明 10290280
捐赠科研通 3054974
什么是DOI,文献DOI怎么找? 1676259
邀请新用户注册赠送积分活动 804300
科研通“疑难数据库(出版商)”最低求助积分说明 761836