已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Robust CSI-Based Wi-Fi Passive Sensing Method Using Attention Mechanism Deep Learning

计算机科学 稳健性(进化) 计算复杂性理论 卷积神经网络 人工智能 信道状态信息 深度学习 冗余(工程) 无线 机器学习 模式识别(心理学) 算法 电信 操作系统 基因 生物化学 化学
作者
Zhengran He,Xixi Zhang,Yu Wang,Yun Lin,Guan Gui,Haris Gacanin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (19): 17490-17499 被引量:18
标识
DOI:10.1109/jiot.2023.3275545
摘要

Wi-Fi-based passive sensing is considered as one of the promising sensing techniques in advanced wireless communication systems due to its wide applications and low deployment cost. However, existing methods are faced with the challenges of low sensing accuracy, high computational complexity, and weak model robustness. To solve these problems, we first propose a robust channel state information (CSI)-based Wi-Fi passive sensing method using attention mechanism deep learning (DL). The proposed method is called as convolutional neural network (CNN)-ABLSTM, a combination of CNNs and attention-based bi-directional long short-term memory (LSTM). Specifically, CSI-based Wi-Fi passive sensing is devised to achieve the high precision of human activity recognition (HAR) due to the fine-grained characteristics of CSI. Second, CNN is adopted to solve the problems of computational redundancy and high algorithm complexity which are often occurred by machine learning (ML) algorithms. Third, we introduce an attention mechanism to deal with the weak robustness of CNN models. Finally, simulation results are provided to confirm the proposed method in three aspects, high recognition performance, computational complexity, and robustness. Compared with CNN, LSTM, and other networks, the proposed CNN-ABLSTM method improves the recognition accuracy by up to 4%, and significantly reduces the calculation rate. Moreover, it still retains 97% accuracy under the different scenes, reflecting a certain robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andone完成签到,获得积分10
1秒前
吃饭完成签到,获得积分20
2秒前
迟原发布了新的文献求助10
2秒前
乐观的白开水完成签到,获得积分20
3秒前
冯雪婷FENG完成签到,获得积分20
4秒前
CodeCraft应助务实青筠采纳,获得10
5秒前
5秒前
XIXI发布了新的文献求助10
6秒前
white完成签到 ,获得积分10
7秒前
搜集达人应助gz采纳,获得10
8秒前
9秒前
耍酷的觅荷完成签到 ,获得积分10
9秒前
wanci应助滚筒洗衣机采纳,获得10
9秒前
FashionBoy应助典雅的俊驰采纳,获得10
11秒前
SciGPT应助www采纳,获得10
11秒前
13秒前
MrTStar完成签到 ,获得积分10
14秒前
16秒前
今后应助XIXI采纳,获得30
16秒前
深情安青应助弹剑作歌采纳,获得10
17秒前
钢铁猪猪侠完成签到 ,获得积分10
17秒前
桐桐应助苗林懋森采纳,获得10
19秒前
石沉大海发布了新的文献求助10
20秒前
gz发布了新的文献求助10
21秒前
23秒前
23秒前
xzy998应助nnnd77采纳,获得10
23秒前
CoCoco完成签到 ,获得积分10
24秒前
虚拟的清炎完成签到 ,获得积分10
24秒前
24秒前
情怀应助等一只ya采纳,获得10
25秒前
落后钢铁侠完成签到 ,获得积分10
25秒前
冷静的半梦应助hha采纳,获得10
25秒前
XIXI完成签到,获得积分20
26秒前
www发布了新的文献求助10
27秒前
27秒前
Owen应助迟原采纳,获得10
27秒前
zhang应助自由马儿采纳,获得10
28秒前
阚曦发布了新的文献求助10
29秒前
落寞一斩完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Proposals That Work: A Guide for Planning Dissertations and Grant Proposals 888
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4704936
求助须知:如何正确求助?哪些是违规求助? 4071663
关于积分的说明 12591024
捐赠科研通 3772464
什么是DOI,文献DOI怎么找? 2083766
邀请新用户注册赠送积分活动 1110961
科研通“疑难数据库(出版商)”最低求助积分说明 988669