亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Ranking-Based Cross-Entropy Loss for Early Classification of Time Series

计算机科学 人工智能 机器学习 分类器(UML) 时间序列 排名(信息检索) 熵(时间箭头) 数据挖掘 模式识别(心理学) 物理 量子力学
作者
C. P. Sun,Hongyan Li,Moxian Song,Shenda Hong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tnnls.2023.3250203
摘要

Early classification tasks aim to classify time series before observing full data. It is critical in time-sensitive applications such as early sepsis diagnosis in the intensive care unit (ICU). Early diagnosis can provide more opportunities for doctors to rescue lives. However, there are two conflicting goals in the early classification task—accuracy and earliness. Most existing methods try to find a balance between them by weighing one goal against the other. But we argue that a powerful early classifier should always make highly accurate predictions at any moment. The main obstacle is that the key features suitable for classification are not obvious in the early stage, resulting in the excessive overlap of time series distributions in different time stages. The indistinguishable distributions make it difficult for classifiers to recognize. To solve this problem, this article proposes a novel ranking-based cross-entropy () loss to jointly learn the feature of classes and the order of earliness from time series data. In this way, can help classifier to generate probability distributions of time series in different stages with more distinguishable boundary. Thus, the classification accuracy at each time step is finally improved. Besides, for the applicability of the method, we also accelerate the training process by focusing the learning process on high-ranking samples. Experiments on three real-world datasets show that our method can perform classification more accurately than all baselines at all moments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助大魔王采纳,获得10
5秒前
15秒前
orchidaceae发布了新的文献求助10
20秒前
爱慕秋森万完成签到,获得积分10
23秒前
孟筱完成签到 ,获得积分10
35秒前
天天快乐应助orchidaceae采纳,获得10
36秒前
47秒前
大魔王发布了新的文献求助10
52秒前
pojian完成签到,获得积分10
53秒前
12发布了新的文献求助10
59秒前
小新完成签到 ,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
asd_1应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
馆长举报花卷求助涉嫌违规
1分钟前
1分钟前
story发布了新的文献求助10
1分钟前
1分钟前
Wsh完成签到,获得积分10
1分钟前
12发布了新的文献求助10
1分钟前
机智诗兰发布了新的文献求助10
1分钟前
科目三应助通义千问采纳,获得10
1分钟前
热情的寄瑶完成签到 ,获得积分10
1分钟前
1分钟前
weijian完成签到,获得积分10
2分钟前
通义千问发布了新的文献求助10
2分钟前
机智诗兰完成签到,获得积分10
2分钟前
行走完成签到,获得积分10
2分钟前
Hello应助123采纳,获得10
2分钟前
12完成签到,获得积分10
2分钟前
12发布了新的文献求助10
2分钟前
2分钟前
fzzf完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
杨学清发布了新的文献求助10
3分钟前
123发布了新的文献求助10
3分钟前
bbbbfffff完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4567655
求助须知:如何正确求助?哪些是违规求助? 3990619
关于积分的说明 12354869
捐赠科研通 3662466
什么是DOI,文献DOI怎么找? 2018173
邀请新用户注册赠送积分活动 1052724
科研通“疑难数据库(出版商)”最低求助积分说明 940193