PGNneo: A Proteogenomics-Based Neoantigen Prediction Pipeline in Noncoding Regions

蛋白质基因组学 计算生物学 生物 基因组 基因 遗传学 基因组学
作者
Xiaoxiu Tan,Linfeng Xu,Xingxing Jian,Jian Ouyang,Bo Hu,Xin-Rong Yang,Tao Wang,Lu Xie
出处
期刊:Cells [MDPI AG]
卷期号:12 (5): 782-782
标识
DOI:10.3390/cells12050782
摘要

The development of a neoantigen-based personalized vaccine has promise in the hunt for cancer immunotherapy. The challenge in neoantigen vaccine design is the need to rapidly and accurately identify, in patients, those neoantigens with vaccine potential. Evidence shows that neoantigens can be derived from noncoding sequences, but there are few specific tools for identifying neoantigens in noncoding regions. In this work, we describe a proteogenomics-based pipeline, namely PGNneo, for use in discovering neoantigens derived from the noncoding region of the human genome with reliability. In PGNneo, four modules are included: (1) noncoding somatic variant calling and HLA typing; (2) peptide extraction and customized database construction; (3) variant peptide identification; (4) neoantigen prediction and selection. We have demonstrated the effectiveness of PGNneo and applied and validated our methodology in two real-world hepatocellular carcinoma (HCC) cohorts. TP53, WWP1, ATM, KMT2C, and NFE2L2, which are frequently mutating genes associated with HCC, were identified in two cohorts and corresponded to 107 neoantigens from non-coding regions. In addition, we applied PGNneo to a colorectal cancer (CRC) cohort, demonstrating that the tool can be extended and verified in other tumor types. In summary, PGNneo can specifically detect neoantigens generated by noncoding regions in tumors, providing additional immune targets for cancer types with a low tumor mutational burden (TMB) in coding regions. PGNneo, together with our previous tool, can identify coding and noncoding region-derived neoantigens and, thus, will contribute to a complete understanding of the tumor immune target landscape. PGNneo source code and documentation are available at Github. To facilitate the installation and use of PGNneo, we provide a Docker container and a GUI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关关完成签到 ,获得积分10
刚刚
刚刚
1秒前
共享精神应助HaHa采纳,获得10
1秒前
2秒前
叮叮当当发布了新的文献求助30
2秒前
3秒前
琳雨完成签到,获得积分10
4秒前
luck发布了新的文献求助10
4秒前
tao发布了新的文献求助10
4秒前
sevenhill应助寇博翔采纳,获得10
4秒前
PengqianGuo完成签到,获得积分10
4秒前
小郝已读博完成签到 ,获得积分10
6秒前
6秒前
香蕉觅云应助gkw采纳,获得10
6秒前
7秒前
小凯发布了新的文献求助20
7秒前
TRY发布了新的文献求助10
7秒前
JJS发布了新的文献求助10
8秒前
8秒前
领导范儿应助碧蓝千凡采纳,获得10
10秒前
10秒前
魏然完成签到,获得积分10
10秒前
隐形曼青应助zz采纳,获得10
11秒前
11秒前
11秒前
CodeCraft应助乌迪尔采纳,获得10
11秒前
直率的惜寒完成签到,获得积分10
12秒前
独孤妖月完成签到,获得积分10
12秒前
GSQ发布了新的文献求助10
12秒前
毛毛发布了新的文献求助10
13秒前
fyh8818发布了新的文献求助10
13秒前
wuyi完成签到,获得积分10
13秒前
13秒前
15秒前
独孤妖月发布了新的文献求助10
16秒前
HaHa发布了新的文献求助10
16秒前
念念人青发布了新的文献求助10
16秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548256
关于积分的说明 14212896
捐赠科研通 4468451
什么是DOI,文献DOI怎么找? 2449037
邀请新用户注册赠送积分活动 1439959
关于科研通互助平台的介绍 1416594