A preliminary study in classification of the severity of spine deformation in adolescents with lumbar/thoracolumbar idiopathic scoliosis using machine learning algorithms based on lumbosacral joint efforts during gait

脊柱侧凸 腰骶关节 医学 腰椎 机器学习 射线照相术 算法 畸形 人工智能 步态 物理医学与康复 随机森林 计算机科学 放射科 外科
作者
Bahare Samadi,Maxime Raison,Philippe Mahaudens,Christine Detrembleur,Sofiane Achiche
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:26 (11): 1341-1352 被引量:3
标识
DOI:10.1080/10255842.2022.2117547
摘要

To assess the severity and progression of adolescents with idiopathic scoliosis (AIS), radiography with X-rays is usually used. The methods based on statistical observations have been developed from 3D reconstruction of the trunk or topography. Machine learning has shown great potential to classify the severity of scoliosis on imaging data, generally on X-ray measurements. It is also known that AIS leads to the development of gait disorder. To our knowledge, machine learning has never been tested on spine intervertebral efforts during gait as a radiation-free method to classify the severity of spinal deformity in AIS. Develop automated machine learning algorithms in lumbar/thoracolumbar scoliosis to classify the severity of spinal deformity of AIS based on the lumbosacral joint (L5-S1) efforts during gait. The lumbosacral joint efforts of 30 individuals with lumbar/thoracolumbar AIS were used as distinctive features fed to the machine learning algorithms. Several tests were run using various classification algorithms. The labeling consisted of three classes reflecting the severity of scoliosis i.e. mild, moderate and severe. The ensemble classifier algorithm including k-nearest neighbors, support vector machine, random forest and multilayer perceptron achieved the most promising results, with accuracy scores of 91.4%. This preliminary study shows lumbosacral joint efforts can be used to classify the severity of spinal deformity in lumbar/thoracolumbar AIS. This method showed the potential of being used as an assessment tool to follow-up the progression of AIS as a radiation-free method, alternative to radiography. Future studies should be performed to test the method on other categories of AIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
竹萧发布了新的文献求助10
2秒前
今后应助Dophi采纳,获得30
2秒前
华仔应助北冥有鱼采纳,获得10
3秒前
存儿发布了新的文献求助10
3秒前
冷静柚子完成签到,获得积分10
4秒前
33完成签到,获得积分10
4秒前
画凉完成签到,获得积分10
6秒前
Ava应助pipipi采纳,获得10
7秒前
阿王完成签到,获得积分10
7秒前
李健的小迷弟应助小糊涂采纳,获得10
7秒前
8秒前
彭于晏应助Jingyi采纳,获得10
9秒前
11秒前
11秒前
hh完成签到 ,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
mlg1552003完成签到,获得积分10
14秒前
脑洞疼应助fhznuli采纳,获得10
16秒前
17秒前
mlg1552003发布了新的文献求助10
17秒前
2233发布了新的文献求助10
18秒前
南瓜饼完成签到,获得积分10
19秒前
19秒前
19秒前
光亮白山完成签到 ,获得积分10
21秒前
pipipi发布了新的文献求助10
22秒前
tianjiu发布了新的文献求助10
22秒前
24秒前
24秒前
科研通AI5应助八戒的梦想采纳,获得10
24秒前
深情安青应助研友_Z1xNWn采纳,获得10
25秒前
小糊涂发布了新的文献求助10
26秒前
fhznuli发布了新的文献求助10
28秒前
28秒前
2233完成签到,获得积分20
28秒前
28秒前
今后应助zhangweny采纳,获得10
28秒前
28秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291083
求助须知:如何正确求助?哪些是违规求助? 3818231
关于积分的说明 11957162
捐赠科研通 3461710
什么是DOI,文献DOI怎么找? 1898690
邀请新用户注册赠送积分活动 947275
科研通“疑难数据库(出版商)”最低求助积分说明 850032