Automatic tree crown segmentation using dense forest point clouds from Personal Laser Scanning (PLS)

点云 分割 牙冠(牙科) 树(集合论) 胸径 激光扫描 人工智能 计算机科学 激光雷达 数学 遥感 模式识别(心理学) 地理 林业 激光器 光学 数学分析 物理 医学 牙科
作者
Andreas Tockner,Christoph Gollob,Ralf Kraßnitzer,Tim Ritter,Arne Nothdurft
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:114: 103025-103025 被引量:19
标识
DOI:10.1016/j.jag.2022.103025
摘要

Among digital-based technologies to monitor forest ecosystems, personal laser scanning (PLS) has high potential to characterize even complex deciduous and rainforests. PLS data include a complete and detailed 3D representation of forest stands, but tree individuals need to be segmented accurately before retrieving tree characteristics. As manual on-screen segmentation is time-consuming and labor intensive, we suggest an automatic voxel-based region growing crown segmentation algorithm. Diameter at breast height (dbh), tree height, crown base height (cbh), crown projection area (cpa) and crown volume were automatically extracted from single tree point clouds. The methodology was validated on previously published PLS raw data in terms of segmentation accuracy and measurement precision. Manual segmentation, field measurements, and geometrical crown models were used as reference data. The overall segmentation accuracy of the crowns was 87.02% and tree height was accurately measured with a bias of −0.05 m and a root mean square deviation (RMSD) of 1.21 m (6.33%). Existing geometric crown models proved to be a realistic approximation of the true crown architecture and matched the measured tree crown volume with a bias of −4.62 m3 and a RMSD of 63.02 m3 (31.72%). Tree height and cpa were not affected by segmentation accuracy, but a major challenge remained in estimating cbh. The proposed methodology provides an efficient and low-cost solution for a fully automatic and digital forest inventory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单薄的小鸽子完成签到,获得积分10
刚刚
薛定谔的猫完成签到,获得积分10
1秒前
sby19发布了新的文献求助30
2秒前
奥利给完成签到,获得积分10
3秒前
Lidandan发布了新的文献求助10
3秒前
延陵君完成签到,获得积分10
4秒前
勤奋的越彬完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
完美世界应助安好采纳,获得10
6秒前
ding完成签到 ,获得积分10
7秒前
7秒前
元宝团子完成签到,获得积分10
7秒前
lydiaabc发布了新的文献求助10
7秒前
8秒前
lei发布了新的文献求助10
9秒前
hh完成签到,获得积分20
9秒前
wei完成签到 ,获得积分10
9秒前
9秒前
8R60d8应助慧海拾穗采纳,获得10
9秒前
9秒前
嘿嘿完成签到 ,获得积分10
11秒前
烂漫的凝芙完成签到,获得积分10
12秒前
lijianguo完成签到,获得积分10
12秒前
胡东东完成签到,获得积分10
12秒前
粥粥完成签到,获得积分10
13秒前
纪震宇发布了新的文献求助10
13秒前
冬冬天赖完成签到,获得积分10
13秒前
丘奇发布了新的文献求助10
13秒前
13秒前
mrlow完成签到,获得积分10
14秒前
111发布了新的文献求助10
14秒前
无私小小完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
小蛤蟆发布了新的文献求助10
15秒前
单身的青柏完成签到 ,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482970
求助须知:如何正确求助?哪些是违规求助? 4583670
关于积分的说明 14391865
捐赠科研通 4513114
什么是DOI,文献DOI怎么找? 2473374
邀请新用户注册赠送积分活动 1459397
关于科研通互助平台的介绍 1432946