State Parameter Estimation of Intelligent Vehicles Based on an Adaptive Unscented Kalman Filter

卡尔曼滤波器 控制理论(社会学) 扩展卡尔曼滤波器 无味变换 噪音(视频) 计算机科学 卡西姆 不变扩展卡尔曼滤波器 MATLAB语言 人工智能 操作系统 图像(数学) 控制(管理)
作者
Yu Wang,Yushan Li,Ziliang Zhao
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 1500-1500 被引量:10
标识
DOI:10.3390/electronics12061500
摘要

The premise of vehicle intelligent decision making is to obtain vehicle motion state parameters accurately and in real-time. Several state parameters cannot be measured directly by vehicle sensors, so estimation algorithms based on filtering are effective solutions. The most representative algorithm is the Kalman filter, especially the standard unscented Kalman filter (UKF) that has been widely used in vehicle state estimation because of its superiority in dealing with nonlinear filtering problems. However, although the UKF assumes that the noise statistics of the system are known, due to the complex and changeable operating conditions, sensor aging and other factors, these noises vary. In order to realize high-precision vehicle state estimation, a noise-adaptive UKF algorithm is proposed in this article. The maximum a posteriori (MAP) algorithm is used to dynamically update the noise of the vehicle system, and it is embedded into the update step of the UKF to form an adaptive unscented Kalman filter (AUKF). The system will dynamically update the noise when noise statistics are unknown and prevent filter divergence by adjusting the mean and covariance of the estimated noise to improve accuracy. On this basis, the proposed method is verified by the joint simulation of CarSim and Matlab/Simulink, confirming that the AUKF performs better than the standard UKF in estimation accuracy and stability under different degrees of noise disturbance, and the estimation accuracy for the yaw rate, side slip angle and longitudinal velocity is improved by 20.08%, 40.98% and 89.91%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
1秒前
汉堡包应助博修采纳,获得10
1秒前
研友_ZGRvon完成签到,获得积分10
1秒前
ycp完成签到,获得积分10
3秒前
4秒前
甫寸完成签到,获得积分10
4秒前
5秒前
5秒前
zs1234完成签到,获得积分10
6秒前
7秒前
净水涟漪发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Dandelion完成签到,获得积分10
10秒前
QQWQEQRQ发布了新的文献求助10
11秒前
深情安青应助绵绵采纳,获得10
11秒前
Akim应助ting采纳,获得10
12秒前
xiax03发布了新的文献求助10
13秒前
李健应助P1US采纳,获得10
14秒前
15秒前
16秒前
跳跃乘风完成签到,获得积分10
16秒前
abc发布了新的文献求助10
16秒前
火龙果完成签到,获得积分10
17秒前
Mine完成签到,获得积分10
18秒前
彭于晏应助陆千万采纳,获得10
19秒前
大爱仙尊发布了新的文献求助10
19秒前
任虎完成签到,获得积分10
19秒前
21秒前
Mine发布了新的文献求助10
23秒前
24秒前
何大青完成签到,获得积分10
24秒前
GGG发布了新的文献求助10
25秒前
DHMO完成签到,获得积分10
26秒前
LL发布了新的文献求助10
26秒前
博修发布了新的文献求助10
29秒前
净水涟漪完成签到,获得积分20
30秒前
30秒前
艺馨完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
“animal - derived protein extraction separation”,“animal - derived protein structure identification”,“animal - derived protein activity” 520
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4274044
求助须知:如何正确求助?哪些是违规求助? 3803406
关于积分的说明 11918292
捐赠科研通 3450267
什么是DOI,文献DOI怎么找? 1891973
邀请新用户注册赠送积分活动 942821
科研通“疑难数据库(出版商)”最低求助积分说明 846571