An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients—diagnostic study

医学 乳腺癌 腋窝淋巴结 淋巴 淋巴结 腋窝淋巴结清扫术 放射科 列线图 转移 癌症 肿瘤科 病理 内科学 前哨淋巴结
作者
Limeng Qu,Xilong Mei,Zixi Yi,Qiongyan Zou,Qin Zhou,Danhua Zhang,Meirong Zhou,Lei Pei,Long Qian,Jiahao Meng,Hua‐Shan Zhang,Qitong Chen,Wenjun Yi
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:1
标识
DOI:10.1097/js9.0000000000001778
摘要

Background: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes is unsatisfactory. In this study, we propose the use of radiomic technology and three-dimensional (3D) visualization technology to develop an unsupervised learning model for predicting axillary lymph node metastasis in patients with breast cancer, aiming to provide a new method for clinical axillary lymph node assessment in patients with this disease. Methods: In this study, we retrospectively analyzed the data of 350 patients with invasive breast cancer who underwent lung-enhanced CT and axillary lymph node dissection (ALND) surgery at the Department of Breast Surgery of the XXX Hospital of XXX University. We used 3D visualization technology to create a 3D atlas of axillary lymph nodes and identified the region of interest (ROI) for the lymph nodes. Radiomic features were subsequently extracted and selected, and a prediction model for axillary lymph nodes was constructed using the K-means unsupervised algorithm. To validate the model, we prospectively collected data from 128 breast cancer patients who were clinically evaluated as negative at our center. Results: Using 3D visualization technology, we extracted and selected a total of 36 CT radiomics features. The unsupervised learning model categorized 1737 unlabeled lymph nodes into two groups, and the analysis of the radiomic features between these groups indicated potential differences in lymph node status. Further validation with 1397 labeled lymph nodes demonstrated that the model had good predictive ability for axillary lymph node status, with an area under the curve (AUC) of 0.847 (0.825-0.869). Additionally, the model’s excellent predictive performance was confirmed in the 128 axillary clinical assessment negative cohort (cN0) and the 350 clinical assessment positive (cN+) cohort, for which the correct classification rates (CCR) were 86.72% and 87.43%, respectively, which were significantly greater than those of clinical assessment methods. Conclusions: We created an unsupervised learning model that accurately predicts the status of axillary lymph nodes. This approach offers a novel solution for the precise assessment of axillary lymph nodes in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刺猬完成签到,获得积分10
3秒前
现代大神完成签到,获得积分10
5秒前
执着芷卉完成签到 ,获得积分10
20秒前
Hi完成签到 ,获得积分10
21秒前
天天有年年发完成签到 ,获得积分10
23秒前
烟花应助wowser采纳,获得10
24秒前
24秒前
奋斗雅香完成签到 ,获得积分10
24秒前
枫威完成签到 ,获得积分10
27秒前
我要读博士完成签到 ,获得积分10
30秒前
30秒前
大意的晓亦完成签到 ,获得积分10
32秒前
wowser发布了新的文献求助10
33秒前
8D完成签到,获得积分10
34秒前
甜甜木各格完成签到 ,获得积分10
36秒前
NICKPLZ完成签到,获得积分10
39秒前
胖胖完成签到 ,获得积分0
40秒前
余味应助科研通管家采纳,获得10
42秒前
余味应助科研通管家采纳,获得10
42秒前
deadsea完成签到,获得积分10
44秒前
47秒前
善学以致用应助wowser采纳,获得10
49秒前
研友_851KE8发布了新的文献求助10
52秒前
务实鞅完成签到 ,获得积分10
56秒前
56秒前
热带蚂蚁完成签到 ,获得积分10
58秒前
wonwojo完成签到 ,获得积分10
59秒前
科研小白完成签到 ,获得积分10
1分钟前
无与伦比完成签到 ,获得积分10
1分钟前
1分钟前
xiaofan完成签到,获得积分10
1分钟前
小四完成签到,获得积分20
1分钟前
whitepiece完成签到,获得积分10
1分钟前
JiangHb完成签到,获得积分10
1分钟前
小琪完成签到 ,获得积分10
1分钟前
lindsay完成签到,获得积分10
1分钟前
chenying完成签到 ,获得积分10
1分钟前
1分钟前
GG完成签到 ,获得积分10
1分钟前
瞬间de回眸完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301000
捐赠科研通 3057194
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626