Predicting suicidality with small sets of interpretable reward behavior and survey variables

心理学 计量经济学 统计 数学
作者
Shamal Lalvani,Sumra Bari,Nicole L. Vike,Leandros Stefanopoulos,Byoung-Woo Kim,Martin P. Block,Nicos Maglaveras,Aggelos K. Katsaggelos,Hans C. Breiter
标识
DOI:10.1038/s44220-024-00229-x
摘要

Abstract The prediction of suicidal thought and behavior has met with mixed results. This study of 3,476 de-identified participants (4,019 before data exclusion) quantified the prediction of four suicidal thought and behavior (STB) variables using a short reward/aversion judgment task and a limited set of demographic and mental health surveys. The focus was to produce a simple, quick and objective framework for assessing STB that might be automatable, without the use of big data. A balanced random forest classifier performed better than a Gaussian mixture model and four standard machine learning classifiers for predicting passive suicide ideation, active suicide ideation, suicide planning and planning for safety. Accuracies ranged from 78% to 92% (optimal area under the curve between 0.80 and 0.95) without overfitting, and peak performance was observed for predicting suicide planning. The relative importance of features for prediction showed distinct weighting across judgment variables, contributing between 40% and 64% to prediction per Gini scores. Mediation/moderation analyses showed that depression, anxiety, loneliness and age variables moderated the judgment variables, indicating that the interaction of judgment with mental health and demographic indices is fundamental for the high-accuracy prediction of STB. These findings suggest the feasibility of an efficient and highly scalable system for suicide assessment, without requiring psychiatric records or neural measures. The findings suggest that STB might be understood within a cognitive framework for judgment with quantitative variables whose unique constellation separates passive and active suicidal thought (ideation) from suicide planning and planning for safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒸蒸日上完成签到,获得积分10
1秒前
七月江城发布了新的文献求助10
1秒前
1秒前
张欣童666发布了新的文献求助10
5秒前
6秒前
斯文败类应助三雨采纳,获得10
7秒前
英姑应助Return采纳,获得10
7秒前
不摇头的向日葵完成签到,获得积分10
9秒前
翻斗花园612完成签到,获得积分10
9秒前
zhanghhsnow发布了新的文献求助20
10秒前
dfghjkl完成签到 ,获得积分10
11秒前
12秒前
kalani完成签到,获得积分10
15秒前
隐形曼青应助务实青筠采纳,获得10
15秒前
16秒前
苏卿发布了新的文献求助10
16秒前
安东尼发布了新的文献求助10
17秒前
科研白白完成签到,获得积分10
18秒前
20秒前
poison发布了新的文献求助10
21秒前
21秒前
伊一完成签到,获得积分10
22秒前
无私水卉完成签到,获得积分10
25秒前
dfghjkl发布了新的文献求助10
25秒前
kk完成签到 ,获得积分10
25秒前
Return发布了新的文献求助10
26秒前
26秒前
27秒前
科研通AI5应助瘦瘦的斑马采纳,获得10
29秒前
30秒前
华仔应助poison采纳,获得10
31秒前
ywhys发布了新的文献求助10
33秒前
qiulong发布了新的文献求助10
33秒前
草字头完成签到,获得积分10
36秒前
zzzz12发布了新的文献求助10
36秒前
小粒橙完成签到 ,获得积分10
37秒前
wocao完成签到 ,获得积分10
38秒前
poison完成签到,获得积分10
39秒前
你好关注了科研通微信公众号
40秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451