Improving image super-resolution with structured knowledge distillation-based multimodal denoising diffusion probabilistic model

计算机科学 人工智能 采样(信号处理) 概率逻辑 噪音(视频) 图像质量 图像(数学) 图像处理 模式识别(心理学) 计算机视觉 机器学习 滤波器(信号处理)
作者
Li Huang,Jingke Yan,Min Wang,Qin Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (03) 被引量:1
标识
DOI:10.1117/1.jei.33.3.033004
摘要

In the realm of low-resolution (LR) to high-resolution (HR) image reconstruction, denoising diffusion probabilistic models (DDPMs) are recognized for their superior perceptual quality over other generative models, attributed to their adept handling of various degradation factors in LR images, such as noise and blur. However, DDPMs predominantly focus on a single modality in the super-resolution (SR) image reconstruction from LR images, thus overlooking the rich potential information in multimodal data. This lack of integration and comprehensive processing of multimodal data can impede the full utilization of the complementary characteristics of different data types, limiting their effectiveness across a broad range of applications. Moreover, DDPMs require thousands of evaluations to reconstruct high-quality SR images, which significantly impacts their efficiency. In response to these challenges, a novel multimodal DDPM based on structured knowledge distillation (MKDDPM) is introduced. This approach features a multimodal-based DDPM that effectively leverages sparse prior information from another modality, integrated into the MKDDPM network architecture to optimize the solution space and detail features of the reconstructed image. Furthermore, a structured knowledge distillation method is proposed, leveraging a well-trained DDPM and iteratively learning a new DDPM, with each iteration requiring only half the original sampling steps. This method significantly reduces the number of model sampling steps without compromising on sampling quality. Experimental results demonstrate that MKDDPM, even with a substantially reduced number of diffusion steps, still achieves superior performance, providing a novel solution for single-image SR tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koyo发布了新的文献求助10
2秒前
2秒前
青烟完成签到,获得积分10
2秒前
脑洞疼应助cwy采纳,获得10
3秒前
3秒前
橘酥酥呀发布了新的文献求助20
4秒前
4秒前
薛家泰完成签到 ,获得积分10
4秒前
sainanTang发布了新的文献求助10
5秒前
坦率的冥王星完成签到,获得积分10
5秒前
May完成签到,获得积分10
6秒前
7秒前
文章必发完成签到,获得积分10
7秒前
四月完成签到 ,获得积分10
8秒前
靓丽的傻姑完成签到,获得积分10
9秒前
hhhh发布了新的文献求助10
9秒前
11秒前
yahonyoyoyo发布了新的文献求助10
12秒前
李爱国应助xuan采纳,获得10
12秒前
子南完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
鹹魚一條完成签到 ,获得积分10
17秒前
xuan发布了新的文献求助10
17秒前
henny完成签到 ,获得积分10
18秒前
lemono_o完成签到,获得积分10
19秒前
七QQ完成签到,获得积分10
19秒前
小皮不皮发布了新的文献求助10
19秒前
科研通AI2S应助Aru采纳,获得10
20秒前
22秒前
科研发布了新的文献求助10
22秒前
wu8577应助yahonyoyoyo采纳,获得10
22秒前
快乐棒棒糖完成签到,获得积分10
25秒前
25秒前
Juvenilesy完成签到,获得积分10
26秒前
28秒前
啊a完成签到,获得积分10
28秒前
Baneyhua发布了新的文献求助10
29秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565