Different KNN Parameters on Road Surface Extraction from UAV-based Point Cloud under Several Machine Learning Algorithms

点云 计算机科学 云计算 萃取(化学) 算法 路面 人工智能 曲面(拓扑) 机器学习 数学 工程类 几何学 化学 土木工程 色谱法 操作系统
作者
Serkan Biçici
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106005-106005 被引量:3
标识
DOI:10.1088/1361-6501/ad5ab9
摘要

Abstract Accurate road surface from a three-dimensional (3D) point cloud depends on various parameters. One crucial parameter is the set of point features. Point features enable classification by capturing characteristics of the surface on which the points are located. These features are calculated based on the closest points surrounding each point. In this study, the K-nearest neighbors algorithm (KNN) was applied to identify these closest points. The KNN algorithm requires only one input, the number of closest points ( k ). Eight different point features were developed using different k values, and their impact on road surface classification from the 3D point cloud was investigated. It was observed that there is no significant improvement in classification accuracy until a certain k value. However, better classification accuracy was achieved after a certain k value. The effect of different k values was also investigated under different training sample structures and machine learning (ML) algorithms. When training samples were selected from a single location as a large group, similar classification accuracy was obtained across different k values. Conversely, when training samples were chosen from various regions in smaller groups rather than a single large group, improved classification was observed as the k value increased. Additionally, it was noted that five different ML algorithms-random forest, support vector machine, generalized linear model, linear discriminant analysis, and robust linear discriminant analysis-have almost similar performance under different k values. Finally, using the optimum k value, improvements of up to 4.543% and 6.601% in accuracy and quality measures, respectively, were found.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLGOD完成签到,获得积分20
刚刚
刚刚
神笔小瑛发布了新的文献求助10
1秒前
bkagyin应助shihui采纳,获得10
1秒前
小透明发布了新的文献求助30
2秒前
LLGOD发布了新的文献求助30
3秒前
5秒前
懦弱的安珊完成签到,获得积分10
6秒前
小蘑菇应助伶俐耷采纳,获得10
6秒前
7秒前
唐泽雪穗应助qiu采纳,获得10
7秒前
玉面手雷王完成签到,获得积分20
8秒前
正直红酒完成签到,获得积分10
9秒前
浮游应助Hmbb采纳,获得10
9秒前
10秒前
10秒前
12秒前
可乐发布了新的文献求助10
12秒前
小刘完成签到,获得积分10
13秒前
JMchiefEditor完成签到,获得积分10
13秒前
DrDong98完成签到,获得积分10
13秒前
浮游应助阿秃采纳,获得10
14秒前
好好搞科研完成签到 ,获得积分10
14秒前
是大胖子呀完成签到,获得积分20
15秒前
15秒前
15秒前
16秒前
16秒前
今后应助Ronna采纳,获得10
16秒前
TOM发布了新的文献求助10
17秒前
可乐完成签到,获得积分10
17秒前
憨子完成签到,获得积分20
17秒前
鲜蘑发布了新的文献求助10
17秒前
传奇3应助夏夏采纳,获得10
17秒前
任润发布了新的文献求助10
19秒前
shihui发布了新的文献求助10
21秒前
21秒前
P16完成签到,获得积分10
21秒前
一丁雨完成签到,获得积分10
21秒前
MinQi完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140