Machine Learning in Biomaterials, Biomechanics/Mechanobiology, and Biofabrication: State of the Art and Perspective

生物加工 机械生物学 透视图(图形) 生物力学 最先进的 计算机科学 工程类 生物医学工程 医学 组织工程 数据科学 人工智能 解剖
作者
Chi Wu,Yanan Xu,Jianguang Fang,Qing Li
出处
期刊:Archives of Computational Methods in Engineering [Springer Science+Business Media]
标识
DOI:10.1007/s11831-024-10100-y
摘要

Abstract In the past three decades, biomedical engineering has emerged as a significant and rapidly growing field across various disciplines. From an engineering perspective, biomaterials, biomechanics, and biofabrication play pivotal roles in interacting with targeted living biological systems for diverse therapeutic purposes. In this context, in silico modelling stands out as an effective and efficient alternative for investigating complex interactive responses in vivo. This paper offers a comprehensive review of the swiftly expanding field of machine learning (ML) techniques, empowering biomedical engineering to develop cutting-edge treatments for addressing healthcare challenges. The review categorically outlines different types of ML algorithms. It proceeds by first assessing their applications in biomaterials, covering such aspects as data mining/processing, digital twins, and data-driven design. Subsequently, ML approaches are scrutinised for the studies on mono-/multi-scale biomechanics and mechanobiology. Finally, the review extends to ML techniques in bioprinting and biomanufacturing, encompassing design optimisation and in situ monitoring. Furthermore, the paper presents typical ML-based applications in implantable devices, including tissue scaffolds, orthopaedic implants, and arterial stents. Finally, the challenges and perspectives are illuminated, providing insights for academia, industry, and biomedical professionals to further develop and apply ML strategies in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星完成签到,获得积分10
1秒前
SciGPT应助lucky采纳,获得10
1秒前
2秒前
2秒前
kw完成签到 ,获得积分10
3秒前
白斯特完成签到,获得积分10
3秒前
完美世界应助尛森采纳,获得10
4秒前
5秒前
英姑应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
阿匡完成签到,获得积分10
8秒前
无花果应助生动的半山采纳,获得10
9秒前
yinshaoyu21发布了新的文献求助10
9秒前
12秒前
lucky发布了新的文献求助10
16秒前
16秒前
wf0806发布了新的文献求助20
16秒前
小高完成签到 ,获得积分10
17秒前
21秒前
22秒前
顾矜应助伶俐雅柏采纳,获得30
24秒前
风再起时完成签到,获得积分10
24秒前
jenningseastera应助阿匡采纳,获得10
25秒前
石头完成签到,获得积分10
27秒前
风再起时发布了新的文献求助10
27秒前
28秒前
yinshaoyu21完成签到,获得积分10
28秒前
abb完成签到,获得积分10
28秒前
浅色墨水完成签到,获得积分10
28秒前
cdercder应助123采纳,获得10
30秒前
充电宝应助123采纳,获得10
30秒前
冰魂应助lalala123采纳,获得10
30秒前
糊涂的宛发布了新的文献求助10
32秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800289
求助须知:如何正确求助?哪些是违规求助? 3345565
关于积分的说明 10325834
捐赠科研通 3062031
什么是DOI,文献DOI怎么找? 1680717
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557