已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep transfer learning for clinical decision-making based on high-throughput data: comprehensive survey with benchmark results

学习迁移 计算机科学 深度学习 水准点(测量) 机器学习 人工智能 吞吐量 数据科学 电信 大地测量学 无线 地理
作者
Muhammad Toseef,Olutomilayo Olayemi Petinrin,Fuzhou Wang,Saifur Rahaman,Zhe Liu,Xiangtao Li,Ka‐Chun Wong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:18
标识
DOI:10.1093/bib/bbad254
摘要

The rapid growth of omics-based data has revolutionized biomedical research and precision medicine, allowing machine learning models to be developed for cutting-edge performance. However, despite the wealth of high-throughput data available, the performance of these models is hindered by the lack of sufficient training data, particularly in clinical research (in vivo experiments). As a result, translating this knowledge into clinical practice, such as predicting drug responses, remains a challenging task. Transfer learning is a promising tool that bridges the gap between data domains by transferring knowledge from the source to the target domain. Researchers have proposed transfer learning to predict clinical outcomes by leveraging pre-clinical data (mouse, zebrafish), highlighting its vast potential. In this work, we present a comprehensive literature review of deep transfer learning methods for health informatics and clinical decision-making, focusing on high-throughput molecular data. Previous reviews mostly covered image-based transfer learning works, while we present a more detailed analysis of transfer learning papers. Furthermore, we evaluated original studies based on different evaluation settings across cross-validations, data splits and model architectures. The result shows that those transfer learning methods have great potential; high-throughput sequencing data and state-of-the-art deep learning models lead to significant insights and conclusions. Additionally, we explored various datasets in transfer learning papers with statistics and visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Zb0GqL完成签到 ,获得积分20
1秒前
树123发布了新的文献求助10
1秒前
小莫关注了科研通微信公众号
2秒前
HEIKU应助林狗采纳,获得10
2秒前
我是老大应助may采纳,获得10
3秒前
小白完成签到 ,获得积分10
4秒前
研友_Zb0GqL关注了科研通微信公众号
5秒前
5秒前
reece完成签到 ,获得积分10
6秒前
二七发布了新的文献求助10
10秒前
繁荣的青旋完成签到 ,获得积分10
10秒前
12秒前
13秒前
搞怪文轩发布了新的文献求助10
17秒前
李俊枫完成签到 ,获得积分10
17秒前
青云天发布了新的文献求助10
18秒前
19秒前
wanci应助sept采纳,获得10
21秒前
VDC发布了新的文献求助10
23秒前
23秒前
星空完成签到 ,获得积分10
23秒前
Waki完成签到 ,获得积分10
24秒前
Yolo完成签到 ,获得积分10
24秒前
WYP完成签到,获得积分10
25秒前
yan完成签到 ,获得积分10
25秒前
清爽蹇发布了新的文献求助10
25秒前
26秒前
小莫发布了新的文献求助10
27秒前
ANmin完成签到 ,获得积分10
27秒前
华仔应助王舜富采纳,获得10
28秒前
香蕉觅云应助CHND采纳,获得10
28秒前
科研通AI5应助哭泣的擎汉采纳,获得10
29秒前
29秒前
29秒前
科研通AI5应助zf2023采纳,获得10
31秒前
mashichuang发布了新的文献求助10
36秒前
SciGPT应助Glamic采纳,获得10
36秒前
YuuuY完成签到 ,获得积分10
37秒前
time4323完成签到,获得积分10
39秒前
上官若男应助ssk采纳,获得10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815420
求助须知:如何正确求助?哪些是违规求助? 3359189
关于积分的说明 10400678
捐赠科研通 3076839
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674