Towards a partnership of teachers and intelligent learning technology: A systematic literature review of model‐based learning analytics

学习分析 计算机科学 分析 知识管理 背景(考古学) 教育技术 数据科学 数学教育 心理学 生物 古生物学
作者
Tobias Ley,Kairit Tammets,Gerti Pishtari,Pankaj Chejara,Reet Kasepalu,Mohammad Khalil,Merike Saar,Iiris Tuvi,Terje Väljataga,Barbara Wasson
出处
期刊:Journal of Computer Assisted Learning [Wiley]
卷期号:39 (5): 1397-1417 被引量:13
标识
DOI:10.1111/jcal.12844
摘要

Abstract Background With increased use of artificial intelligence in the classroom, there is now a need to better understand the complementarity of intelligent learning technology and teachers to produce effective instruction. Objective The paper reviews the current research on intelligent learning technology designed to make models of student learning and instruction transparent to teachers, an area we call model‐based learning analytics. We intended to gain an insight into the coupling between the knowledge models that underpin the intelligent system and the knowledge used by teachers in their classroom decision making. Methods Using a systematic literature review methodology, we first identified 42 papers, mainly from the domain of intelligent tutoring systems and learning analytics dashboards that conformed to our selection criteria. We then qualitatively analysed the context in which the systems were applied, models they used and benefits reported for teachers and learners. Results and Conclusions A majority of papers used either domain or learner models, suggesting that instructional decisions are mostly left to teachers. Compared to previous reviews, our set of papers appeared to have a stronger focus on providing teachers with theory‐driven insights and instructional decisions. This suggests that model‐based learning analytics can address some of the shortcomings of the field, like meaningfulness and actionability of learning analytics tools. However, impact in the classroom still needs further research, as in half of the cases the reported benefits were not backed with evidence. Future research should focus on the dynamic interaction between teachers and technology and how learning analytics has an impact on learning and decision making by teachers and students. We offer a taxonomy of knowledge models that can serve as a starting point for designing such interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shelemi发布了新的文献求助10
2秒前
whynot发布了新的文献求助10
2秒前
孙振亚发布了新的文献求助10
4秒前
4秒前
大淘发布了新的文献求助10
5秒前
小马甲应助迅速的八宝粥采纳,获得10
6秒前
无限达完成签到,获得积分10
6秒前
7秒前
李喜喜发布了新的文献求助10
8秒前
KKIII发布了新的文献求助10
12秒前
shusen完成签到,获得积分10
13秒前
在水一方应助李喜喜采纳,获得10
14秒前
所所应助lei采纳,获得10
16秒前
思源应助丝竹丛中墨未干采纳,获得20
19秒前
19秒前
19秒前
kyt驳回了情怀应助
19秒前
LynnQiu发布了新的文献求助10
22秒前
23秒前
苹果追命完成签到,获得积分10
23秒前
大淘完成签到,获得积分10
24秒前
shelemi发布了新的文献求助10
24秒前
27秒前
cfffff完成签到,获得积分10
30秒前
黄凯发布了新的文献求助150
34秒前
36秒前
202483067完成签到 ,获得积分10
36秒前
leoMessi发布了新的文献求助10
37秒前
小蘑菇应助迅速的八宝粥采纳,获得10
39秒前
Lau完成签到,获得积分10
41秒前
搜集达人应助慎ming采纳,获得80
41秒前
深情安青应助猩心采纳,获得10
42秒前
doDo完成签到 ,获得积分10
43秒前
shelemi发布了新的文献求助10
43秒前
科研通AI5应助俞璐采纳,获得10
43秒前
44秒前
七七完成签到,获得积分10
45秒前
46秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669