亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radial basis function-differential quadrature-based physics-informed neural network for steady incompressible flows

物理 正交(天文学) 离散化 基函数 高斯求积 应用数学 人工神经网络 搭配法 径向基函数 微分方程 算法 数学分析 常微分方程 尼氏法 计算机科学 边值问题 数学 人工智能 量子力学 光学
作者
Yang Xiao,Liming Yang,Yinjie Du,Yuxin Song,C. Shu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:22
标识
DOI:10.1063/5.0159224
摘要

In this work, a radial basis function differential quadrature-based physics-informed neural network (RBFDQ-PINN) is proposed to simulate steady incompressible flows. The conventional physics-informed neural network (PINN) makes use of the physical equation as a constraint to ensure that the solution satisfies the physical law and the automatic differentiation (AD) method to calculate derivatives at collocation points. Although the AD-PINN is expedient in evaluating derivatives at arbitrary points, it is time-consuming with higher-order derivatives and may lead to nonphysical solutions with sparse samples. Alternatively, the finite difference (FD) method can facilitate the calculation of derivatives, but the FD-PINN will increase the computational cost when handling random point distributions, especially with higher-order discretization schemes. To address these issues, the radial basis function differential quadrature (RBFDQ) method is incorporated into the PINN to replace the AD method for the calculation of derivatives. The RBFDQ method equips with high efficiency in the calculation of high-order derivatives as compared with the AD method and great flexibility in the distribution of mesh points as compared with the FD method. As a result, the proposed RBFDQ-PINN is not only more efficient and accurate but also applicable to irregular geometries. To demonstrate its effectiveness, the RBFDQ-PINN is tested in sample problems such as the lid-driven cavity flow, the channel flow over a backward-facing step, and the flow around a circular cylinder. Numerical results reveal that the RBFDQ-PINN achieves satisfactory accuracy without any labeled collocation points, whereas the AD-PINN struggles to solve some cases, especially for high Reynolds number flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安详的面包完成签到,获得积分20
8秒前
h0jian09完成签到,获得积分10
20秒前
28秒前
33秒前
111发布了新的文献求助10
35秒前
37秒前
LRxxx完成签到 ,获得积分10
43秒前
111完成签到,获得积分10
50秒前
何my完成签到 ,获得积分10
51秒前
52秒前
ding应助果冻小朋友采纳,获得10
55秒前
香蕉觅云应助玩命的醉山采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
果冻小朋友完成签到,获得积分20
1分钟前
moiaoh发布了新的文献求助30
1分钟前
1分钟前
33发布了新的文献求助30
1分钟前
uikymh完成签到 ,获得积分0
1分钟前
狸宝的小果子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助zhangzheng采纳,获得10
1分钟前
byxiaoshou发布了新的文献求助10
1分钟前
科研通AI6应助Little Mianmian采纳,获得10
1分钟前
1分钟前
筱溪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
zhangzheng发布了新的文献求助10
2分钟前
CES_SH发布了新的文献求助10
2分钟前
疗效发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4497837
求助须知:如何正确求助?哪些是违规求助? 3949304
关于积分的说明 12244225
捐赠科研通 3607379
什么是DOI,文献DOI怎么找? 1984439
邀请新用户注册赠送积分活动 1020789
科研通“疑难数据库(出版商)”最低求助积分说明 913268