亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

WNet: W-Shaped Hierarchical Network for Remote-Sensing Image Change Detection

计算机科学 变压器 编码器 人工智能 卷积神经网络 像素 特征提取 模式识别(心理学) 计算机视觉 电压 物理 量子力学 操作系统
作者
Xu Tang,Tianxiang Zhang,Jingjing Ma,Xiangrong Zhang,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:87
标识
DOI:10.1109/tgrs.2023.3296383
摘要

Change detection (CD) is a hot research topic in the remote sensing (RS) community. With the increasing availability of high-resolution (HR) RS images, there is a growing demand for CD models with high detection accuracy and generalization ability. In other words, the CD models are expected to work well for various HRRS images. Convolutional neural networks (CNNs) have been dominated in HRRS image CD due to their excellent information extraction and nonlinear fitting capabilities. However, they are not skilled in modeling long-range contexts hidden in HRRS images, which limits their performance in CD tasks more or less. Recently, the Transformer, which is good at extracting global context dependencies, has become popular in the RS community. Nevertheless, detailed local knowledge receives insufficient emphasis in common Transformers. Considering the above discussion, we combine CNN and Transformer and propose a new W-shaped dual Siamese branch hierarchical network for HRRS image CD named WNet. WNet first incorporates a Siamese CNN and a Siamese Transformer into a dual-branch encoder to extract multi-level local fine-grained features and global long-range contextual dependencies. Also, we introduce deformable ideas into the Siamese CNN and Transformer to make WNet understand the critical and irregular areas within HRRS images. Second, the difference enhancement module (DEM) is developed and embedded into the encoder to produce the difference feature maps at different levels. Using simple pixel-wise subtraction and channel-wise concatenation, the changes of interest and irrelevant changes can be highlighted and suppressed in a learnable manner. Next, the multi-level difference feature maps are fused stage by stage by CNN-Transformer fusion modules (CTFMs), which are the basic units of the decoder in WNet. In CTFM, the local, global, and cross-scale clues are taken into account to ensure the integrity of information. Finally, a simple classifier is constructed and added at the top of the decoder to predict the change maps. Positive experimental results counted on four public datasets demonstrate that the proposed WNet is helpful in HRRS image CD tasks. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Image-Change-Detection/tree/main/WNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
我睡觉的时候不困完成签到 ,获得积分10
5秒前
TonyLee完成签到,获得积分10
6秒前
飘逸碧琴完成签到,获得积分10
8秒前
悠哉发布了新的文献求助10
10秒前
11秒前
罗伊黄发布了新的文献求助10
16秒前
16秒前
zhang1发布了新的文献求助10
17秒前
摸鱼大王完成签到 ,获得积分10
18秒前
22秒前
beiye发布了新的文献求助10
25秒前
科研通AI6应助悠哉采纳,获得10
26秒前
齐多达完成签到 ,获得积分10
30秒前
桐桐应助科研通管家采纳,获得10
34秒前
BowieHuang应助科研通管家采纳,获得10
34秒前
beiye完成签到,获得积分10
40秒前
依米完成签到,获得积分10
43秒前
绮烟完成签到 ,获得积分10
51秒前
迷路的成危完成签到,获得积分10
51秒前
完美世界应助SKYE采纳,获得10
56秒前
Jiawei完成签到,获得积分10
56秒前
57秒前
烟花应助zhang1采纳,获得10
1分钟前
1分钟前
1分钟前
猫猫发布了新的文献求助10
1分钟前
1分钟前
三泥完成签到,获得积分10
1分钟前
1分钟前
1分钟前
SKYE发布了新的文献求助10
2分钟前
2分钟前
冬日空虚完成签到,获得积分20
2分钟前
2分钟前
iiii发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
mmyhn应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
KNOW完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534156
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582228
捐赠科研通 4562402
什么是DOI,文献DOI怎么找? 2500167
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450832