原子层沉积
非阻塞I/O
异质结
材料科学
图层(电子)
二极管
方向(向量空间)
沉积(地质)
光电子学
纳米技术
化学
几何学
催化作用
地质学
生物化学
数学
古生物学
沉积物
作者
Yizheng Liu,Shane M. W. Witsell,John F. Conley,Sriram Krishnamoorthy
摘要
This work reports the demonstration of ALD-deposited NiO/β-Ga2O3 heterojunction diodes (HJDs) on low doped (ND-NA ≤ 1 × 1016 cm−3) drift layers and highly doped (001) & (100) n+ substrates (ND-NA > 1 × 1018 cm−3) with experimental observation of a parallel-plane junction electric field as high as 7.5 MV/cm, revealing a crystal orientation dependence in β-Ga2O3. We use a metalorganic precursor, bis(1,4-di-tert-butyl-1,3-diazadienyl) (nickel Ni(tBu2DAD)2), with ozone (O3) to deposit NiO. The NiO/β-Ga2O3 HJD on the 7.7 μm-thick HVPE-grown drift region exhibited an on-state current density of ∼20 A/cm2 at 5 V, ∼10−8 A/cm2 reverse leakage at low reverse bias (−5 V), and a rectifying ratio (Jon/Joff) of ∼109. The HJD broke down at ∼2.2 kV reverse bias, corresponding to a ∼3.4 MV/cm parallel-plane junction electric field, with a noise-floor reverse leakage (10−8–10−6 A/cm2, nA) at 80% of the device's catastrophic breakdown voltage. The NiO/β-Ga2O3 HJDs on n+ (001) & (100) highly doped substrates exhibited breakdown voltages at 12.5–16.0 and 28.5–70.5 V, respectively, with extracted critical electric fields (EC) at 2.30–2.76 and 4.33–7.50 MV/cm, revealing a substrate crystal orientation dependence on breakdown electric field for β-Ga2O3. The 7.5 MV/cm EC reported here is one of the highest parallel-plane junction electric fields reported in literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI