Highly Selective Toward HER or CO2RR by Regulating Cu Single and Dual Atoms on g‐C3N4

材料科学 对偶(语法数字) 原子物理学 结晶学 纳米技术 物理 文学类 艺术 化学
作者
Wan‐Ting Chen,Hung Wei Shiu,Yu‐Xun Chen,Erdembayalag Batsaikhan,Y.-Z. Lai,S. L. Cheng,Tohru Araki,Jyh‐Fu Lee,Michitoshi Hayashi,Yao‐Jane Hsu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202514183
摘要

Abstract Designing heterogeneous electrocatalysts with high activities and product selectivity toward desired electrocatalytic reactions remains a significant challenge in mitigating reliance on fossil fuels. Here, a controllable Cu‐based electrocatalysts system on graphitic carbon nitride (g‐C 3 N 4 ), where the atomic configuration of Cu species is precisely tuned to regulate catalytic behavior is reported. The Cu single‐atoms catalysts (Cu‐SACs) and aggregated Cu nanoparticles (Cu‐NP) embedded g‐C 3 N 4 contain only hydrogenated Cu atom sites, exhibit highly selective for hydrogen evolution reaction (HER), and are incapable for carbon dioxide reduction (CO 2 RR). In contrast, intercalated Cu dual‐atoms catalysts (Cu‐DACs) embedded g‐C 3 N 4 , incorporating both hydrogenated Cu atoms and intercalated Cu atoms sites, enable CO 2 RR while suppressing HER, demonstrating the critical role of intercalated Cu atoms in modulating selectivity. This structure–function relationship highlights the critical role of intercalated Cu‐DACs in modulating catalytic selectivity. A remarkable Faradaic efficiency of 88% methane during CO 2 RR is observed in Cu‐DACs systems, showcasing its potential in efficient product separation for industrial‐scale applications. This study not only demonstrates the functional importance of active site engineering in electrocatalysis but also highlights the high specificity, selectivity, and stability of Cu‐SACs and Cu‐DACs on g‐C 3 N 4 support, offering new insights into the design of efficient electrocatalysts for target reactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
道天完成签到,获得积分10
刚刚
WQ发布了新的文献求助10
刚刚
1秒前
ABC010305关注了科研通微信公众号
1秒前
1秒前
华仔应助辛勤的谷冬采纳,获得10
2秒前
哈密瓜发布了新的文献求助30
2秒前
你曾是少年完成签到,获得积分10
2秒前
3秒前
hitagi发布了新的文献求助30
3秒前
充电宝应助feiying88采纳,获得10
3秒前
川盈发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
6秒前
6秒前
6秒前
莫愁发布了新的文献求助10
6秒前
YY完成签到,获得积分10
8秒前
灰灰12138发布了新的文献求助10
8秒前
8秒前
眼睛大的冰岚完成签到,获得积分10
10秒前
爱吃榴莲的芒果完成签到,获得积分10
10秒前
科研通AI2S应助求道者采纳,获得10
11秒前
007发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
852应助Kevin采纳,获得10
14秒前
ABC010305发布了新的文献求助10
14秒前
WenHT驳回了qbx应助
14秒前
14秒前
15秒前
Joker完成签到 ,获得积分10
17秒前
奋斗的萝发布了新的文献求助10
17秒前
17秒前
17秒前
顺之完成签到,获得积分10
17秒前
007完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Social Epistemology: The Niches for Knowledge and Ignorance 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4252286
求助须知:如何正确求助?哪些是违规求助? 3785421
关于积分的说明 11881465
捐赠科研通 3436436
什么是DOI,文献DOI怎么找? 1885909
邀请新用户注册赠送积分活动 937383
科研通“疑难数据库(出版商)”最低求助积分说明 843128