亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early detection of bark beetle infestations in Central Europe using deep learning–based reconstructions of irregular Sentinel-2 time series

作者
Christopher Schiller,Johannes May,Randolf Klinke,Fabian Ewald Fassnacht
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpaf053
摘要

Abstract Norway spruce (Picea abies) is among the most abundant tree species in Central Europe. Due to climate change-induced extreme weather events, spruce trees are increasingly stressed and therefore threatened by European spruce bark beetle (Ips typographus) infestations. Recent mass outbreaks led to severe ecological and economic damage in Central European forests. After an infestation, the filial generation of the beetles swarms out within 6 to 10 weeks to infest new trees. Consequently, an efficient bark beetle management needs to remove infested trees within 10 weeks to prevent further dispersal. While remote sensing allows for large-scale monitoring of forests, the detection of bark beetle infestations remains challenging, as many trees show no visible signs of the infestation within the 10-week detection period. Here, we try to achieve early detections by adjusting a state-of-the-art Deep Learning model to be able to cope with irregular Sentinel-2 satellite time series for reconstruction-based anomaly detection. The model is trained on >300 000 time series of undisturbed coniferous forest and the threshold denoting an anomaly is derived independently, i.e. not from the test dataset. We test the model on a geographically independent dataset with known infestation dates. It achieves moderate performance for detections within 10 weeks after the infestation with a producer’s accuracy (PA) of 11.8% ± 8.4% and user’s accuracy (UA) of 43.5% ± 24.5% across three model runs, but yields very good results when extending the detection period to 13 weeks (UA = 84.5% ± 7.6%, PA = 81.5% ± 1%). Since the model responds immediately to an anomaly, we conclude that area-wide bark beetle detections within 10 weeks after infestation are likely impossible using Sentinel-2 alone. Still, our approach can readily be used as a near real-time monitoring system for coniferous forest, be applied on any forest disturbance detection task, and may complement terrestrial surveys in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天天晴完成签到 ,获得积分10
刚刚
闪闪秋寒完成签到 ,获得积分10
2秒前
逮劳完成签到 ,获得积分10
2秒前
4秒前
烟花应助大熊采纳,获得10
5秒前
lili关注了科研通微信公众号
7秒前
李爱国应助参商采纳,获得10
9秒前
吱吱熊sama完成签到,获得积分10
9秒前
彭于晏应助Wenyilong采纳,获得10
13秒前
Akim应助Galaxy采纳,获得10
18秒前
小蘑菇应助小花生采纳,获得10
19秒前
21秒前
23秒前
笨笨完成签到,获得积分10
23秒前
27秒前
Aliya完成签到 ,获得积分10
28秒前
是多少发布了新的文献求助10
29秒前
YifanCheng完成签到,获得积分10
29秒前
健壮的雪瑶完成签到,获得积分10
32秒前
大熊发布了新的文献求助10
32秒前
Carl发布了新的文献求助10
33秒前
白羽丫完成签到,获得积分10
36秒前
Tanya完成签到 ,获得积分10
37秒前
傅嘉庆完成签到,获得积分20
40秒前
超薄也是距离感完成签到,获得积分10
42秒前
混子完成签到,获得积分10
49秒前
认真的幻姬完成签到,获得积分10
50秒前
傅嘉庆发布了新的文献求助10
52秒前
土豪的洋葱完成签到,获得积分10
52秒前
大个应助ooooodai采纳,获得10
52秒前
momo完成签到,获得积分10
52秒前
本本完成签到 ,获得积分10
54秒前
CipherSage应助Ni采纳,获得10
57秒前
shaonianzu应助科研通管家采纳,获得10
58秒前
酷波er应助科研通管家采纳,获得10
58秒前
无花果应助科研通管家采纳,获得10
58秒前
顾矜应助科研通管家采纳,获得10
58秒前
慕青应助科研通管家采纳,获得10
58秒前
orixero应助科研通管家采纳,获得10
58秒前
123完成签到,获得积分10
59秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334680
求助须知:如何正确求助?哪些是违规求助? 4472727
关于积分的说明 13920704
捐赠科研通 4366744
什么是DOI,文献DOI怎么找? 2399201
邀请新用户注册赠送积分活动 1392370
关于科研通互助平台的介绍 1363268