AI adoption rate and corporate green innovation efficiency: Evidence from Chinese energy companies

绿色创新 业务 产业组织 经济
作者
Zongrun Wang,Taiyu Zhang,Xiaohang Ren,Yukun Shi
出处
期刊:Energy Economics [Elsevier BV]
卷期号:132: 107499-107499 被引量:61
标识
DOI:10.1016/j.eneco.2024.107499
摘要

The advent of artificial intelligence (AI) technology has led to transformative shifts in the human landscape. Moreover, as a potent driving force behind the evolution of energy companies, green innovation has the potential to be supported by advanced technologies such as AI. However, academic research exploring the association between the AI adoption rate and green innovation in energy companies is scarce. This study analyzes data on Chinese listed energy companies from 2010 to 2020. Our findings indicate that energy companies with extensive AI adoption exhibit higher green innovation efficiency. This finding is particularly pronounced among firms that report substantial participation in environmental, social, and governance activities. However, our findings reveal that executives who focus on short-term benefits can undermine the positive influence of AI adoption on green innovation. These main findings are notably significant for energy companies where the roles of chief executive officer and board director are unified, state-owned enterprises, and companies that do not hold bank shares. This study offers novel insights and valuable guidance for policymakers regarding the strategic development of energy companies, thereby bridging a significant gap in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福妙柏发布了新的文献求助10
刚刚
文文武完成签到,获得积分10
1秒前
Ehgnix发布了新的文献求助10
2秒前
传奇3应助liam采纳,获得10
3秒前
天外飞聪完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
天外飞聪发布了新的文献求助10
8秒前
耶耶耶完成签到,获得积分10
8秒前
万能图书馆应助zhuang采纳,获得10
9秒前
搜集达人应助王嘉巍采纳,获得10
9秒前
10秒前
完美世界应助maitiandehe采纳,获得10
10秒前
徐旖旎发布了新的文献求助30
11秒前
11秒前
12秒前
谢紫玲完成签到,获得积分10
13秒前
suxin发布了新的文献求助10
13秒前
13秒前
Dado应助hxj采纳,获得10
14秒前
15秒前
SciGPT应助淡水痕采纳,获得10
15秒前
Membranes发布了新的文献求助10
16秒前
fanger发布了新的文献求助50
16秒前
liam发布了新的文献求助10
16秒前
aldehyde应助yeLI采纳,获得10
16秒前
17秒前
18秒前
18秒前
18秒前
18秒前
20秒前
科研通AI5应助聪慧代天采纳,获得10
20秒前
21秒前
22秒前
23秒前
在不在发布了新的文献求助10
24秒前
24秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065993
求助须知:如何正确求助?哪些是违规求助? 3604665
关于积分的说明 11448100
捐赠科研通 3327058
什么是DOI,文献DOI怎么找? 1829019
邀请新用户注册赠送积分活动 899099
科研通“疑难数据库(出版商)”最低求助积分说明 819437