Binder Jetting‐based Metal Printing

金属 材料科学 冶金
作者
Marco Mariani,N. Lecis,Amir Mostafaei
标识
DOI:10.1002/9783527839353.ch15
摘要

Chapter 15 Binder Jetting-based Metal Printing Marco Mariani, Marco Mariani Politecnico di Milano, Department of Mechanical Engineering, Via Privata Giuseppe La Masa 1, Milano, 20156 ItalySearch for more papers by this authorNora Lecis, Nora Lecis Politecnico di Milano, Department of Mechanical Engineering, Via Privata Giuseppe La Masa 1, Milano, 20156 ItalySearch for more papers by this authorAmir Mostafaei, Amir Mostafaei Illinois Institute of Technology, Department of Mechanical, Materials, and Aerospace Engineering, Chicago, IL, 60616 USASearch for more papers by this author Marco Mariani, Marco Mariani Politecnico di Milano, Department of Mechanical Engineering, Via Privata Giuseppe La Masa 1, Milano, 20156 ItalySearch for more papers by this authorNora Lecis, Nora Lecis Politecnico di Milano, Department of Mechanical Engineering, Via Privata Giuseppe La Masa 1, Milano, 20156 ItalySearch for more papers by this authorAmir Mostafaei, Amir Mostafaei Illinois Institute of Technology, Department of Mechanical, Materials, and Aerospace Engineering, Chicago, IL, 60616 USASearch for more papers by this author Book Editor(s):Hang Z. Yu, Hang Z. Yu Virginia Tech, 460 Old Turner Street, Blacksburg, 24061 VA,, United StatesSearch for more papers by this authorNihan Tuncer, Nihan Tuncer Desktop Metal Inc., 63 Third Ave., Burlington, 01803 MA,, United StatesSearch for more papers by this authorZhili Feng, Zhili Feng Oak Ridge National Lab, 1 Bethel Valley Road, Oak Ridge, 37830 TN,, United StatesSearch for more papers by this author First published: 19 April 2024 https://doi.org/10.1002/9783527839353.ch15 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Binder Jet 3D Printing (BJ3DP) is a non-beam additive manufacturing technique that involves jetting a liquid binder onto layers of powdered materials, selectively joining them, and then undergoing a densification process. It holds unique promise among additive manufacturing technologies due to its potential for rapid production of complex structures with isotropic properties. Leveraging traditional powder metallurgy, BJ3DP machines can produce prototypes with material properties and surface finishes comparable to traditional methods. While various powdered materials have been utilized, the challenge lies in optimizing printing and post-processing methods for enhanced part performance. This chapter provides an overview of powder feedstock, liquid binder, the 3D printing process, and post-processing thermal treatment. Additionally, it explores future developments and opportunities in this technique. References ISO/ASTM DIS ( 2020 ). 52900 Additive manufacturing—general principles—fundamentals and vocabulary . Google Scholar Sachs , E. , Cima , M. , and Cornie , J. ( 1990 ). Three-dimensional printing: rapid tooling and prototypes directly from a CAD model . CIRP Annals 39 : 201 – 204 . https://doi.org/10.1016/S0007-8506(07)61035-X . 10.1016/S0007-8506(07)61035-X Google Scholar Verlee , B. , Dormal , T. , and Lecomte-Beckers , J. ( 2012 ). Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing . Powder Metallurgy 55 : 260 – 267 . 10.1179/0032589912Z.00000000082 CASWeb of Science®Google Scholar Do , T. , Kwon , P. , and Shin , C.S. ( 2017 ). Process development toward full-density stainless steel parts with binder jetting printing . International Journal of Machine Tools and Manufacture 121 : 50 – 60 . 10.1016/j.ijmachtools.2017.04.006 Web of Science®Google Scholar Cordero , Z.C. , Siddel , D.H. , Peter , W.H. , and Elliott , A.M. ( 2017 ). Strengthening of ferrous binder jet 3D printed components through bronze infiltration . Additive Manufacturing 15 : 87 – 92 . 10.1016/j.addma.2017.03.011 CASGoogle Scholar Bai , Y. , Wagner , G. , and Williams , C.B. ( 2017 ). Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals . Journal of Manufacturing Science and Engineering 139 : 0810199 . https://doi.org/10.1115/1.4036640 . 10.1115/1.4036640 Google Scholar Nandwana , P. , Elliott , A.M.A.M. , Siddel , D. et al. ( 2017 ). Powder bed binder jet 3D printing of Inconel 718: densification, microstructural evolution and challenges . Current Opinion in Solid State & Materials Science 21 : 207 – 218 . https://doi.org/10.1016/j.cossms.2016.12.002 . 10.1016/j.cossms.2016.12.002 CASWeb of Science®Google Scholar Mostafaei , A. , Toman , J. , Stevens , E.L. et al. ( 2017 ). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders . Acta Materialia 124 : 280 – 289 . 10.1016/j.actamat.2016.11.021 CASWeb of Science®Google Scholar Sheydaeian , E. , Fishman , Z. , Vlasea , M. , and Toyserkani , E. ( 2017 ). On the effect of throughout layer thickness variation on properties of additively manufactured cellular titanium structures . Additive Manufacturing 18 : 40 – 47 . 10.1016/j.addma.2017.08.017 CASWeb of Science®Google Scholar Mariani , M. , Beltrami , R. , Brusa , P. et al. ( 2021 ). 3D printing of fine alumina powders by binder jetting . Journal of the European Ceramic Society 41 : 5307 – 5315 . https://doi.org/10.1016/j.jeurceramsoc.2021.04.006 . 10.1016/j.jeurceramsoc.2021.04.006 CASWeb of Science®Google Scholar Terrani , K. , Jolly , B. , and Trammell , M. ( 2020 ). 3D printing of high-purity silicon carbide . Journal of the American Ceramic Society 103 : 1575 – 1581 . 10.1111/jace.16888 CASWeb of Science®Google Scholar Mariani , M. , Goncharov , I. , Mariani , D. et al. ( 2021 ). Mechanical and microstructural characterization of WC-Co consolidated by binder jetting additive manufacturing . International Journal of Refractory Metals and Hard Materials 100 : 105639 . https://doi.org/10.1016/j.ijrmhm.2021.105639 . 10.1016/j.ijrmhm.2021.105639 CASGoogle Scholar Mostafaei , A. , De Vecchis , P.R. , Kimes , K.A. et al. ( 2021 ). Effect of binder saturation and drying time on microstructure and resulting properties of sinter-HIP binder-jet 3D-printed WC-Co composites . Additive Manufacturing 46 : 102128 . https://doi.org/10.1016/j.addma.2021.102128 . 10.1016/j.addma.2021.102128 CASGoogle Scholar Mirzababaei , S. and Pasebani , S. ( 2019 ). A review on binder jet additive manufacturing of 316L stainless steel . Journal of Manufacturing And Materials Processing 82 : 1 – 36 . Google Scholar Lecis , N. , Mariani , M. , Beltrami , R. et al. ( 2021 ). Effects of process parameters, debinding and sintering on the microstructure of 316L stainless steel produced by binder jetting . Materials Science and Engineering A 828 : 142108 . https://doi.org/10.1016/j.msea.2021.142108 . 10.1016/j.msea.2021.142108 CASWeb of Science®Google Scholar Crane , N.B. ( 2020 ). Impact of part thickness and drying conditions on saturation limits in binder jet additive manufacturing . Additive Manufacturing 33 : 101127 . https://doi.org/10.1016/j.addma.2020.101127 . 10.1016/j.addma.2020.101127 Google Scholar Huber , D. , Vogel , L. , and Fischer , A. ( 2021 ). The effects of sintering temperature and hold time on densification, mechanical properties and microstructural characteristics of binder jet 3D printed 17-4 PH stainless steel . Additive Manufacturing 46 : 102114 . https://doi.org/10.1016/j.addma.2021.102114 . 10.1016/j.addma.2021.102114 CASWeb of Science®Google Scholar Cabo Rios , A. , Hryha , E. , Olevsky , E. , and Harlin , P. ( 2022 ). Sintering anisotropy of binder jetted 316L stainless steel: part II – microstructure evolution during sintering . Powder Metallurgy 65 ( 4 ): 283 – 295 . https://doi.org/10.1080/00325899.2021.2020486 . 10.1080/00325899.2021.2020486 CASGoogle Scholar Borujeni , S.S. , Shad , A. , Venkata , K.A. et al. ( 2022 ). Numerical simulation of shrinkage and deformation during sintering in metal binder jetting with experimental validation . Materials and Design 216 : 110490 . https://doi.org/10.1016/j.matdes.2022.110490 . 10.1016/j.matdes.2022.110490 Google Scholar Zhang , K. , Zhang , W. , Brune , R. et al. ( 2021 ). Numerical simulation and experimental measurement of pressureless sintering of stainless steel part printed by binder jetting additive manufacturing . Additive Manufacturing 47 : 102330 . https://doi.org/10.1016/j.addma.2021.102330 . 10.1016/j.addma.2021.102330 CASWeb of Science®Google Scholar Zago , M. , Lecis , N.F.M. , Vedani , M. , and Cristofolini , I. ( 2021 ). Dimensional and geometrical precision of parts produced by binder jetting process as affected by the anisotropic shrinkage on sintering . Additive Manufacturing 43 : 102007 . https://doi.org/10.1016/j.addma.2021.102007 . 10.1016/j.addma.2021.102007 CASGoogle Scholar Kumar , P. , Jayaraj , R. , Suryawanshi , J. et al. ( 2020 ). Fatigue strength of additively manufactured 316L austenitic stainless steel . Acta Materialia 199 : 225 – 239 . https://doi.org/10.1016/j.actamat.2020.08.033 . 10.1016/j.actamat.2020.08.033 CASWeb of Science®Google Scholar Huang , N. , Cook , O.J. , Smithson , R.L.W. et al. ( 2022 ). Use of ultrasound to identify microstructure-property relationships in 316 stainless steel fabricated with binder jet additive manufacturing . Additive Manufacturing 51 : 102591 . https://doi.org/10.1016/j.addma.2021.102591 . 10.1016/j.addma.2021.102591 CASWeb of Science®Google Scholar Muhammad , W. , Batmaz , R. , Natarajan , A. , and Martin , E. ( 2022 ). Effect of binder jetting microstructure variability on low cycle fatigue behavior of 316L . Materials Science and Engineering A 839 : 142820 . https://doi.org/10.1016/j.msea.2022.142820 . 10.1016/j.msea.2022.142820 CASWeb of Science®Google Scholar Nandwana , P. , Kannan , R. , and Siddel , D. ( 2020 ). Microstructure evolution during binder jet additive manufacturing of H13 tool steel . Additive Manufacturing 36 : 101534 . https://doi.org/10.1016/j.addma.2020.101534 . 10.1016/j.addma.2020.101534 CASGoogle Scholar Liu , J. , Kannan , R. , Zhang , D. et al. ( 2022 ). Multi-scale characterization of supersolidus liquid phase sintered H13 tool steel manufactured via binder jet additive manufacturing . Additive Manufacturing 56 : 102834 . https://doi.org/10.1016/j.addma.2022.102834 . 10.1016/j.addma.2022.102834 CASGoogle Scholar Lee , Y. , Nandwana , P. , and Simunovic , S. ( 2021 ). Powder spreading, densification, and part deformation in binder jetting additive manufacturing . Progress in Additive Manufacturing 7 : 1 – 15 . https://doi.org/10.1007/s40964-021-00214-1 . 10.1007/s40964?021?00214?1 CASGoogle Scholar Yegyan Kumar , A. , Bai , Y. , Eklund , A. , and Williams , C.B. ( 2018 ). The effects of hot isostatic pressing on parts fabricated by binder jetting additive manufacturing . Additive Manufacturing 24 : 115 – 124 . 10.1016/j.addma.2018.09.021 CASWeb of Science®Google Scholar Miyanaji , H. , Rahman , K.M. , Da , M. , and Williams , C.B. ( 2020 ). Effect of fine powder particles on quality of binder jetting parts . Additive Manufacturing 36 : 101587 . https://doi.org/10.1016/j.addma.2020.101587 . 10.1016/j.addma.2020.101587 CASGoogle Scholar Romano , T. , Migliori , E. , Mariani , M. et al. ( 2022 ). Densification behaviour of pure copper processed through cold pressing and binder jetting under different atmospheres . Rapid Prototyping Journal 28 ( 6 ): 1023 – 1039 . https://doi.org/10.1108/RPJ-09-2021-0243 . 10.1108/RPJ-09-2021-0243 Google Scholar Zheng , C. , Mostafaei , A. , de Vecchis , P.R. et al. ( 2021 ). Microstructure evolution for isothermal sintering of binder jet 3D printed alloy 625 above and below the solidus temperature . Additive Manufacturing 47 : 102276 . https://doi.org/10.1016/j.addma.2021.102276 . 10.1016/j.addma.2021.102276 CASGoogle Scholar Dahmen , T. , Henriksen , N.G. , Dahl , K.V. et al. ( 2021 ). Densification, microstructure, and mechanical properties of heat-treated MAR-M247 fabricated by binder jetting . Additive Manufacturing 39 : 101912 . https://doi.org/10.1016/j.addma.2021.101912 . 10.1016/j.addma.2021.101912 CASGoogle Scholar Martin , E. , Natarajan , A. , Kottilingam , S. , and Batmaz , R. ( 2021 ). Binder jetting of "hard-to-weld" high gamma prime nickel-based superalloy RENÉ 108 . Additive Manufacturing 39 : 101894 . https://doi.org/10.1016/j.addma.2021.101894 . 10.1016/j.addma.2021.101894 CASGoogle Scholar Yadav , P. , Fu , Z. , Knorr , M. , and Travitzky , N. ( 2020 ). Binder jetting 3D printing of titanium aluminides based materials: a feasibility study . Advanced Engineering Materials 22 ( 9 ): 3 – 9 . https://doi.org/10.1002/adem.202000408 . 10.1002/adem.202000408 Google Scholar Tang , Y. , Huang , Z. , Yang , J. , and Xie , Y. ( 2020 ). Enhancing the capillary force of binder-jetting printing Ti6Al4V and mechanical properties under high temperature sintering by mixing fine powder . Metals (Basel) 10 : 1 – 15 . https://doi.org/10.3390/met10101354 . 10.3390/met10101354 Google Scholar Polozov , I. , Sufiiarov , V. , and Shamshurin , A. ( 2019 ). Synthesis of titanium orthorhombic alloy using binder jetting additive manufacturing . Materials Letters 243 : 88 – 91 . 10.1016/j.matlet.2019.02.027 CASWeb of Science®Google Scholar Xu , Z. , Zhu , Z. , Wang , P. et al. ( 2020 ). Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing . Additive Manufacturing 35 : 101441 . https://doi.org/10.1016/j.addma.2020.101441 . 10.1016/j.addma.2020.101441 CASGoogle Scholar Su , C. , Wang , J. , Li , H. et al. ( 2021 ). Binder-jetting additive manufacturing of Mg alloy densified by two-step sintering process . Journal of Manufacturing Processes 72 : 71 – 79 . https://doi.org/10.1016/j.jmapro.2021.09.061 . 10.1016/j.jmapro.2021.09.061 Web of Science®Google Scholar Stevens , E. , Kimes , K. , Salazar , D. et al. ( 2020 ). Mastering a 1.2 K hysteresis for martensitic para-ferromagnetic partial transformation in Ni-Mn(Cu)-Ga magnetocaloric material via binder jet 3D printing . Additive Manufacturing 37 : 101560 . https://doi.org/10.1016/j.addma.2020.101560 . 10.1016/j.addma.2020.101560 Google Scholar Ke , D. and Bose , S. ( 2018 ). Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing . Additive Manufacturing 22 : 111 – 117 . 10.1016/j.addma.2018.04.020 CASWeb of Science®Google Scholar Zhou , Z. , Lennon , A. , Buchanan , F. et al. ( 2020 ). Binder jetting additive manufacturing of hydroxyapatite powders: effects of adhesives on geometrical accuracy and green compressive strength . Additive Manufacturing 36 : 101645 . https://doi.org/10.1016/j.addma.2020.101645 . 10.1016/j.addma.2020.101645 CASGoogle Scholar Karim , H. , Wicker , R.B. , Lin , Y. et al. ( 2015 ). Fabrication of barium titanate by binder jetting additive manufacturing technology . Ceramics International 41 : 6610 – 6619 . https://doi.org/10.1016/j.ceramint.2015.01.108 . 10.1016/j.ceramint.2015.01.108 Google Scholar Sufiiarov , V. , Kantyukov , A. , Popovich , A. , and Sotov , A. ( 2021 ). Structure and properties of barium titanate lead-free piezoceramic manufactured by binder jetting process . Materials (Basel) 14 : 4419 . https://doi.org/10.3390/ma14164419 . 10.3390/ma14164419 CASPubMedGoogle Scholar Schipf , D.R. , Yesner , G.H. , Sotelo , L. et al. ( 2022 ). Barium titanate 3–3 piezoelectric composites fabricated using binder jet printing . Additive Manufacturing 55 : 102804 . https://doi.org/10.1016/j.addma.2022.102804 . 10.1016/j.addma.2022.102804 CASWeb of Science®Google Scholar Cramer , C.L. , Aguirre , T.G. , Wieber , N.R. et al. ( 2020 ). Binder jet printed WC infiltrated with pre-made melt of WC and Co . International Journal of Refractory Metals and Hard Materials 87 : 105137 . https://doi.org/10.1016/j.ijrmhm.2019.105137 . 10.1016/j.ijrmhm.2019.105137 CASGoogle Scholar Snelling , D.A. , Williams , C.B. , Suchicital , C.T.A. , and Druschitz , A.P. ( 2017 ). Binder jetting advanced ceramics for metal-ceramic composite structures . International Journal of Advanced Manufacturing Technology 92 : 531 – 545 . 10.1007/s00170-017-0139-y Google Scholar Mudanyi , R.K. , Cramer , C.L. , Elliott , A.M. et al. ( 2021 ). W-ZrC composites prepared by reactive melt infiltration of Zr2Cu alloy into binder jet 3D printed WC preforms . International Journal of Refractory Metals and Hard Materials 94 : 105411 . https://doi.org/10.1016/j.ijrmhm.2020.105411 . 10.1016/j.ijrmhm.2020.105411 CASGoogle Scholar Arnold , J.M. , Cramer , C.L. , Elliott , A.M. et al. ( 2019 ). Microstructure evolution during near-net-shape fabrication of Nix Aly-TiC cermets through binder jet additive manufacturing and pressureless melt infiltration . International Journal of Refractory Metals and Hard Materials 104985 . https://doi.org/10.1016/j.ijrmhm.2019.104985 . 10.1016/j.ijrmhm.2019.104985 Google Scholar Enneti , R.K. , Prough , K.C. , Wolfe , T.A. et al. ( 2018 ). Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology . International Journal of Refractory Metals and Hard Materials 71 : 28 – 35 . 10.1016/j.ijrmhm.2017.10.023 CASWeb of Science®Google Scholar Shakor , P. , Chu , S.H. , Puzatova , A. , and Dini , E. ( 2022 ). Review of binder jetting 3D printing in the construction industry . Progress in Additive Manufacturing 7 : 1 – 27 . https://doi.org/10.1007/s40964-021-00252-9 . 10.1007/s40964-021-00252-9 Google Scholar Gobbin , F. , Elsayed , H. , Italiano , A. et al. ( 2021 ). Large scale additive manufacturing of artificial stone components using binder jetting and their X-ray microtomography investigations . Open Ceramics 7 : 100162 . https://doi.org/10.1016/j.oceram.2021.100162 . 10.1016/j.oceram.2021.100162 CASGoogle Scholar Sivarupan , T. , Balasubramani , N. , Saxena , P. et al. ( 2021 ). A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting . Additive Manufacturing 40 : 101889 . https://doi.org/10.1016/j.addma.2021.101889 . 10.1016/j.addma.2021.101889 CASWeb of Science®Google Scholar Mostafaei , A. , Hughes , E.T. , Hilla , C. et al. ( 2017 ). Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders . Data in Brief 10 : 116 – 121 . https://doi.org/10.1016/j.dib.2016.11.078 . 10.1016/j.dib.2016.11.078 PubMedWeb of Science®Google Scholar Mariani , M. , Mariani , D. , Pietro De Gaudenzi , G. , and Lecis , N. ( 2022 ). Effect of printing parameters on sintered WC-Co components by binder jetting . European Journal of Materials 2 : 1 – 12 . https://doi.org/10.1080/26889277.2022.2076617 . 10.1080/26889277.2022.2076617 Google Scholar Du , W. , Singh , M. , and Singh , D. ( 2020 ). Binder jetting additive manufacturing of silicon carbide ceramics: development of bimodal powder feedstocks by modeling and experimental methods . Ceramics International 46 ( 12 ): 19701 – 19707 . https://doi.org/10.1016/j.ceramint.2020.04.098 . 10.1016/j.ceramint.2020.04.098 CASWeb of Science®Google Scholar Du , W. , Roa , J. , Hong , J. et al. ( 2021 ). Binder jetting additive manufacturing: effect of particle size distribution on density . Journal of Manufacturing Science and Engineering 143 . https://doi.org/10.1115/1.4050306 . 10.1115/1.4050306 PubMedGoogle Scholar Wagner , J.J. and Fred Higgs , C. ( 2021 ). Computation of hydrodynamic and capillary phenomena in binder jet three-dimensional printing . Journal of Tribology 143 . https://doi.org/10.1115/1.4050942 . 10.1115/1.4050942 Google Scholar Chun , S.Y. , Kim , T. , Ye , B. et al. ( 2020 ). Capillary pressure and saturation of pore-controlled granules for powder bed binder jetting . Applied Surface Science 515 : 145979 . https://doi.org/10.1016/j.apsusc.2020.145979 . 10.1016/j.apsusc.2020.145979 CASGoogle Scholar Yanez-Sanchez , S.I. , Lennox , M.D. , Therriault , D. et al. ( 2021 ). Model approach for binder selection in binder jetting . Industrial and Engineering Chemistry Research 60 : 15162 – 15173 . https://doi.org/10.1021/acs.iecr.1c02856 . 10.1021/acs.iecr.1c02856 CASWeb of Science®Google Scholar Cao , S. , Xie , F. , He , X. et al. ( 2020 ). Postprocessing study for the controllable structures of ceramic green parts realized by a flexible binder jetting printing (BJP) solution . Advances in Materials Science and Engineering 2020 : 1 – 17 . https://doi.org/10.1155/2020/3865752 . 10.1155/2020/3865752 Google Scholar Gilmer , D. , Han , L. , Hong , E. et al. ( 2020 ). An in-situ crosslinking binder for binder jet additive manufacturing . Additive Manufacturing 35 : 101341 . https://doi.org/10.1016/j.addma.2020.101341 . 10.1016/j.addma.2020.101341 CASWeb of Science®Google Scholar Gilmer , D.B. , Han , L. , Lehmann , M.L. et al. ( 2021 ). Additive manufacturing of strong silica sand structures enabled by polyethyleneimine binder . Nature Communications 12 : 1 – 8 . https://doi.org/10.1038/s41467-021-25463-0 . 10.1038/s41467-021-25463-0 PubMedGoogle Scholar Manotham , S. , Channasanon , S. , Nanthananon , P. et al. ( 2021 ). Photosensitive binder jetting technique for the fabrication of alumina ceramic . Journal of Manufacturing Processes 62 : 313 – 322 . https://doi.org/10.1016/j.jmapro.2020.12.011 . 10.1016/j.jmapro.2020.12.011 Web of Science®Google Scholar Bai , Y. and Williams , C.B. ( 2018 ). The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing . Nanotechnology 29 : 395706 . 10.1088/1361-6528/aad0bb PubMedWeb of Science®Google Scholar Kunchala , P. and Kappagantula , K. ( 2018 ). 3D printing high density ceramics using binder jetting with nanoparticle densifiers . Materials and Design 155 : 443 – 450 . 10.1016/j.matdes.2018.06.009 CASWeb of Science®Google Scholar Oropeza , D. and Hart , A.J.J. ( 2021 ). Reactive binder jet additive manufacturing for microstructural control and dimensional stability of ceramic materials . Additive Manufacturing 48 : 102448 . https://doi.org/10.1016/j.addma.2021.102448 . 10.1016/j.addma.2021.102448 CASGoogle Scholar Bai , Y. and Williams , C.B. ( 2018 ). Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor . Materials and Design 147 : 146 – 156 . 10.1016/j.matdes.2018.03.027 CASWeb of Science®Google Scholar Mostafaei , A. , Elliott , A.M. , Barnes , J.E. et al. ( 2021 ). Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges . Progress in Materials Science 119 : 100707 . https://doi.org/10.1016/j.pmatsci.2020.100707 . 10.1016/j.pmatsci.2020.100707 CASWeb of Science®Google Scholar Utela , B. , Storti , D. , Anderson , R. , and Ganter , M. ( 2008 ). A review of process development steps for new material systems in three dimensional printing (3DP) . Journal of Manufacturing Processes 10 : 96 – 104 . 10.1016/j.jmapro.2009.03.002 Google Scholar Cao , X. and Li , Z. ( 2019 ). Factors Influencing the Mechanical Properties of Three-Dimensional Printed Products From Magnesium Potassium Phosphate Cement Material . Elsevier Inc. 10.1016/B978-0-12-815481-6.00010-5 Google Scholar Bredt , J.F. , Clark , S. , and Gilchrist , G. ( 2006 ). Three dimensional printing material system and method . US Patent 7,087,109 B2. Google Scholar Bredt , J.F. ( 1995 ). Binder Stability and Powder\Binder Interaction in Three Dimensional Printing . Cambridge : Dept. of Mechanical Engineering, Massachusetts Institute of Technology . Google Scholar Ingaglio , J. , Fox , J. , Naito , C.J. , and Bocchini , P. ( 2019 ). Material characteristics of binder jet 3D printed hydrated CSA cement with the addition of fine aggregates . Construction and Building Materials 206 : 494 – 503 . 10.1016/j.conbuildmat.2019.02.065 CASWeb of Science®Google Scholar Shakor , P. , Sanjayan , J. , Nazari , A. , and Nejadi , S. ( 2017 ). Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing . Construction and Building Materials 138 : 398 – 409 . 10.1016/j.conbuildmat.2017.02.037 CASWeb of Science®Google Scholar Feng , P. , Meng , X. , Chen , J.-F. , and Ye , L. ( 2015 ). Mechanical properties of structures 3D printed with cementitious powders . Construction and Building Materials 93 : 486 – 497 . https://doi.org/10.1016/j.conbuildmat.2015.05.132 . 10.1016/j.conbuildmat.2015.05.132 Web of Science®Google Scholar Tancred , D.C. , McCormack , B.A.O. , and Carr , A.J. ( 1998 ). A synthetic bone implant macroscopically identical to cancellous bone . Biomaterials 19 : 2303 – 2311 . https://doi.org/10.1016/S0142-9612(98)00141-0 . 10.1016/S0142-9612(98)00141-0 CASPubMedWeb of Science®Google Scholar Cox , S.C. , Thornby , J.A. , Gibbons , G.J. et al. ( 2015 ). 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications . Materials Science and Engineering: C 47 : 237 – 247 . https://doi.org/10.1016/j.msec.2014.11.024 . 10.1016/j.msec.2014.11.024 CASPubMedWeb of Science®Google Scholar Salehi , M. , Maleksaeedi , S. , Nai , S.M.L. et al. ( 2019 ). A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging . Acta Materialia 165 : 294 – 306 . 10.1016/j.actamat.2018.11.061 CASWeb of Science®Google Scholar Yan , H. , Cannon , W.R. , and Shanefield , D.J. ( 1993 ). Evolution of carbon during burnout and sintering of tape-cast aluminum nitride . Journal of the American Ceramic Society 76 : 166 – 172 . https://doi.org/10.1111/j.1151-2916.1993.tb03702.x . 10.1111/j.1151-2916.1993.tb03702.x CASWeb of Science®Google Scholar Masia , S. , Calvert , P.D. , Rhine , W.E. , and Bowen , H.K. ( 1989 ). Effect of oxides on binder burnout during ceramics processing . Journal of Materials Science 24 : 1907 – 1912 . https://doi.org/10.1007/BF02385397 . 10.1007/BF02385397 CASWeb of Science®Google Scholar Levenfeld , B. , Várez , A. , and Torralba , J.M. ( 2002 ). Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process . Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 33 : 1843 – 1851 . https://doi.org/10.1007/s11661-002-0192-4 . 10.1007/s11661-002-0192-4 Google Scholar Wu , Y. , German , R.M. , Blaine , D. et al. ( 2002 ). Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel . Journal of Materials Science 37 : 3573 – 3583 . https://doi.org/10.1023/A:1016532418920 . 10.1023/A:1016532418920 CASWeb of Science®Google Scholar Rios , A.C. , Hryha , E. , Olesvsky , E. , and Harlin , P. ( 2021 ). Sintering anisotropy of binder jetted 316L stainless steel: part I – sintering anisotropy . Powder Metallurgy 65 ( 4 ): 273 – 282 . https://doi.org/10.1080/00325899.2021.2020485 . 10.1080/00325899.2021.2020485 Google Scholar Mostafaei , A. , De Vecchis , P.R. , Buckenmeyer , M.J. et al. ( 2019 ). Microstructural evolution and resulting properties of differently sintered and heat-treated binder jet 3D printed Stellite 6 . Materials Science and Engineering: C 102 : 276 – 288 . 10.1016/j.msec.2019.04.011 CASPubMedWeb of Science®Google Scholar German , R.M. ( 2010 ). Thermodynamics of sintering . In: Sinteringof Advanced Materials (ed. Z.Z. Fang ), 3 – 32 . Woodhead Publishing . 10.1533/9781845699949.1.3 Google Scholar Chen , Z. , Chen , W. , Chen , L. et al. ( 2022 ). Influence of initial relative densities on the sintering behavior and mechanical behavior of 316 L stainless steel fabricated by binder jet 3D printing . Materials Today Communications 31 : 103369 . https://doi.org/10.1016/j.mtcomm.2022.103369 . 10.1016/j.mtcomm.2022.103369 CASGoogle Scholar Do , T. , Shin , C.S. , Stetsko , D. et al. ( 2015 ). Improving structural integrity with boron-based additives for 3D printed 420 stainless steel . Procedia Manufacturing 1 : 263 – 272 . 10.1016/j.promfg.2015.09.019 Google Scholar Bai , Y. and Williams , C.B. ( 2015 ). An exploration of binder jetting of copper . Rapid Prototyping Journal 21 : 177 – 185 . 10.1108/RPJ-12-2014-0180 Web of Science®Google Scholar Wang , F. , You , S. , Jiang , D. , and Ning , F. ( 2022 ). Study on sintering mechanism for extrusion-based additive manufacturing of stainless steel through molecular dynamics simulation . Additive Manufacturing 58 : 102991 . https://doi.org/10.1016/j.addma.2022.102991 . 10.1016/j.addma.2022.102991 CASGoogle Scholar Kingery , W.D. and Narasimhan , M.D. ( 1959 ). Densification during sintering in the presence of a liquid phase. II. Experimental . Journal of Applied Physics 30 : 307 – 310 . 10.1063/1.1735156 CASWeb of Science®Google Scholar Kuczynski , G. ( 1956 ). The mechanism of densification during sintering of metallic particles . Acta Metallurgica 4 : 58 – 61 . 10.1016/0001-6160(56)90110-9 CASGoogle Scholar Cramer , C.L. , Elliott , A.M. , Kiggans , J.O. et al. ( 2019 ). Processing of complex-shaped collimators made via binder jet additive manufacturing of B 4 C and pressureless melt in fi ltration of Al . Materials and Design 180 : 107956 . https://doi.org/10.1016/j.matdes.2019.107956 . 10.1016/j.matdes.2019.107956 CASGoogle Scholar Cramer , C.L. , Nandwana , P. , Lowden , R.A. , and Elliott , A.M. ( 2019 ). Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method . Additive Manufacturing 28 : 333 – 343 . 10.1016/j.addma.2019.04.009 CASWeb of Science®Google Scholar 420 Stainless Steel Infiltrated with Bronze , ExOne.Com. (n.d.). https://www.exone.com/ExOne/media/About/mfg-guidelines-for-metal-infiltrated-parts.pdf . Google Scholar Gonzalez , J.A. , Mireles , J. , Stafford , S.W. et al. ( 2018 ). Characterization of inconel 625 fabricated using powder-bed-based additive manufacturing technologies . Journal of Materials Processing Technology 264 : 200 – 210 . 10.1016/j.jmatprotec.2018.08.031 Google Scholar Solid‐State Metal Additive Manufacturing: Physics, Processes, Mechanical Properties, and Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zxx完成签到,获得积分10
1秒前
OK完成签到,获得积分10
1秒前
yiyi发布了新的文献求助10
1秒前
秋海棠发布了新的文献求助10
2秒前
drchen完成签到,获得积分10
2秒前
1793480753完成签到 ,获得积分10
2秒前
2秒前
3秒前
岁月荣耀完成签到,获得积分10
3秒前
wqd发布了新的文献求助10
4秒前
13916316904完成签到,获得积分10
4秒前
吴可之完成签到,获得积分10
5秒前
诸不见发布了新的文献求助10
7秒前
胡浩发布了新的文献求助30
7秒前
7秒前
苏栀应助赵亚南采纳,获得10
7秒前
JN完成签到,获得积分10
8秒前
科研通AI6应助秋海棠采纳,获得10
8秒前
Tcmlty完成签到,获得积分10
9秒前
糊涂的雪珊完成签到,获得积分10
9秒前
含蓄的幻竹应助优雅老六采纳,获得10
10秒前
10秒前
10秒前
赵怼怼发布了新的文献求助10
10秒前
IRONARMOUR完成签到,获得积分10
11秒前
可靠的绝音完成签到,获得积分10
12秒前
Wendy发布了新的文献求助10
12秒前
Max7发布了新的文献求助10
12秒前
鸢尾发布了新的文献求助10
13秒前
windcreator完成签到,获得积分10
13秒前
XZZH完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
黄冠完成签到 ,获得积分10
14秒前
xlao完成签到,获得积分20
15秒前
YKJ完成签到 ,获得积分10
15秒前
maolizi完成签到,获得积分10
15秒前
乐观的月亮完成签到,获得积分10
15秒前
顺子发布了新的文献求助10
15秒前
悠然完成签到,获得积分10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4230690
求助须知:如何正确求助?哪些是违规求助? 3764104
关于积分的说明 11827350
捐赠科研通 3423239
什么是DOI,文献DOI怎么找? 1878556
邀请新用户注册赠送积分活动 931605
科研通“疑难数据库(出版商)”最低求助积分说明 839262