Recent advances in modelling structure-property correlations in high-entropy alloys

范围(计算机科学) 高熵合金 计算机科学 材料科学 冶金 合金 程序设计语言
作者
Akash A. Deshmukh,Raghavan Ranganathan
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:204: 127-151 被引量:31
标识
DOI:10.1016/j.jmst.2024.03.027
摘要

Since antiquity, humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands. In 2004, this endeavor witnessed a significant breakthrough with the discovery of high-entropy alloys (HEAs) comprising multi-principal elements. Owing to the four "core-effects", these alloys exhibit exceptional properties including better structural stability, high strength and ductility, improved fatigue/fracture toughness, high corrosion and oxidation resistance, superconductivity, magnetic properties, and good thermal properties. Different synthesis routes have been designed and used to meet the properties of interest for particular applications with varying dimensions. However, HEAs are providing new opportunities and challenges for computational modelling of the complex structure-property correlations and in predictions of phase stability necessary for optimum performance of the alloy. Several attempts have been made to understand these alloys by empirical and computational models, and data-driven approaches to accelerate the materials discovery with a desired set of properties. The present review discusses advances and inferences from simulations and models spanning multiple length and time scales explaining a comprehensive set of structure-properties relations. Additionally, the role of machine learning approaches is also reviewed, underscoring the transformative role of computational modelling in unravelling the multifaceted properties and applications of HEAs, and the scope for future efforts in this direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助linh采纳,获得30
刚刚
huhuan发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
llll完成签到,获得积分10
2秒前
Vitalis完成签到,获得积分10
3秒前
科研通AI6应助oil采纳,获得10
4秒前
4秒前
7秒前
付ffff完成签到,获得积分20
7秒前
Rolling完成签到,获得积分10
8秒前
所所应助Rorea采纳,获得10
10秒前
乞明完成签到 ,获得积分10
10秒前
梦中是片蓝色海关注了科研通微信公众号
10秒前
10秒前
12秒前
酸奶鱼发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
dmj发布了新的文献求助30
13秒前
14秒前
刚刚好关注了科研通微信公众号
14秒前
14秒前
酷波er应助科研小白采纳,获得10
14秒前
萝卜花1968发布了新的文献求助10
14秒前
15秒前
linjiaxin发布了新的文献求助10
15秒前
溯溯完成签到 ,获得积分10
16秒前
浮游应助研0种牛马采纳,获得10
17秒前
紫气东来应助研0种牛马采纳,获得10
17秒前
Sky发布了新的文献求助30
17秒前
可爱的函函应助Baoyuan_Zhu采纳,获得10
17秒前
17秒前
18秒前
18秒前
小小户发布了新的文献求助10
19秒前
东方元语发布了新的文献求助10
19秒前
Galateor完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683