已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D medical image segmentation based on semi-supervised learning using deep co-training

人工智能 计算机科学 过度拟合 深度学习 分割 图像分割 模式识别(心理学) 一致性(知识库) 可视化 机器学习 人工神经网络
作者
Jingdong Yang,Haoqiu Li,Han Wang,Han Man
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:159: 111641-111641 被引量:2
标识
DOI:10.1016/j.asoc.2024.111641
摘要

In recent years, artificial intelligence has been applied to 3D COVID-19 medical image diagnosis, which reduces detection costs and missed diagnosis rates with higher predictive accuracy, and diagnostic efficiency. However, the limited size and low quality of clinical 3D medical image samples have hindered the segmentation performance of 3D models. Therefore, we propose a 3D medical image segmentation model based on semi-supervised learning using co-training. Multi-view and multi-modal images are generated using spatial flipping and windowing techniques to enhance the spatial diversity of 3D image samples. A pseudo label generation module based on confidence-weights is employed to generate reliable pseudo labels for non-annotated data, thereby increasing the sample size and reducing overfitting. The proposed approach utilizes a three-stage training process: firstly, training a single network based on annotated data; secondly, incorporating non-annotated data to train a dual-modal network and generate pseudo labels; finally, jointly training six models in three dimensions using both annotated and pseudo labels generated from multi-view and multi-modal images, aiming to enhance segmentation accuracy and generalization performance. Additionally, a consistency regularization loss is applied to reduce noises and accelerate convergence of the training. Moreover, a heatmap visualization method is employed to focus on the attention of features at each stage of training, providing effective reference for clinical diagnosis. Experiments were conducted on an open dataset of 3D COVID-19 CT samples and a non-annotated dataset from TCIA, including 771 NIFTI-format CT images from 661 COVID-19 patients. The results of 5-fold cross-validation show that the proposed model achieves a segmentation accuracy of Dice=73.30%, ASD=10.633, Sensitivity=63.00%, and Specificity=99.60%. Compared to various typical semi-supervised learning 3D segmentation models, it demonstrates better segmentation accuracy and generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助蓝精灵采纳,获得10
刚刚
辣椒完成签到 ,获得积分10
刚刚
刚刚
辣椒完成签到 ,获得积分10
1秒前
香飘飘完成签到,获得积分10
1秒前
3秒前
沉默问夏完成签到 ,获得积分10
3秒前
rayx3x应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
erg应助木耳采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
xsy发布了新的文献求助30
5秒前
7秒前
8秒前
Dliii完成签到 ,获得积分10
9秒前
付品聪发布了新的文献求助10
10秒前
大意的飞莲完成签到 ,获得积分10
11秒前
文明8完成签到,获得积分10
12秒前
蓝精灵发布了新的文献求助10
14秒前
在水一方应助星星包采纳,获得10
14秒前
Ykaor完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
Criminology34应助随便采纳,获得10
17秒前
19秒前
19秒前
19秒前
GingerF完成签到,获得积分0
20秒前
代代发布了新的文献求助10
22秒前
Demi_Ming发布了新的文献求助10
23秒前
Xu完成签到,获得积分10
24秒前
kalcspin完成签到 ,获得积分10
25秒前
诺奖失主发布了新的文献求助30
25秒前
午盏完成签到,获得积分10
25秒前
26秒前
落寞剑成完成签到 ,获得积分10
27秒前
EternalStrider完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418128
求助须知:如何正确求助?哪些是违规求助? 4533812
关于积分的说明 14142564
捐赠科研通 4450102
什么是DOI,文献DOI怎么找? 2441101
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410065