A Human-Machine Trust Evaluation Method for High-Speed Train Drivers Based on Multi-Modal Physiological Information

情态动词 高速列车 计算机科学 人机系统 人工智能 语音识别 人机交互 运输工程 工程类 材料科学 高分子化学
作者
Huimin Li,Mengxuan Liang,Ke Niu,Yaqiong Zhang
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:41 (4): 2659-2676 被引量:10
标识
DOI:10.1080/10447318.2024.2327188
摘要

With the development of intelligent transportation, it has become mainstream for drivers and automated systems to cooperate to complete train driving tasks. Human-machine trust has become one of the biggest challenges in achieving safe and effective human-machine cooperative driving. Accurate evaluation of human-machine trust is of great significance to calibrate human-machine trust, realize trust management, reduce safety accidents caused by trust bias, and achieve performance and safety goals. Based on typical driving scenarios of high-speed trains, this paper designs a train fault judgment experiment. By adjusting the machine's reliability, the driver's trust is cultivated to form their cognition of the machine. When the driver's cognition is stable, data from the Trust in Automated (TIA) scale and modes of physiological information, including electrodermal activity (EDA), electrocardiograms (ECG), respiration (RSP), and functional near-infrared spectroscopy (fNIRS), are collected during the fault judgment experiment. Based on analysis of this multi-modal physiological information, a human-machine trust classification model for high-speed train drivers is proposed. The results show that when all four modes of physiological information are used as input, the random forest classification model is most accurate, reaching 93.14%. This indicates that the human-machine trust level of the driver can be accurately represented by physiological information, thus inputting the driver's physiological information into the classification model outputs their level of human-machine trust. The human-machine trust classification model of high-speed train drivers built in this paper based on multi-modal physiological information establishes the corresponding relationship between physiological trust and human-machine trust level. Human-machine trust level is characterized by physiological trust monitoring, which provides support for the dynamic management of trust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助丰富的无招采纳,获得10
2秒前
SAGE发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
4秒前
TiY发布了新的文献求助10
4秒前
雨琴完成签到,获得积分10
4秒前
5秒前
5秒前
Richard发布了新的文献求助10
5秒前
5秒前
5秒前
qq发布了新的文献求助10
6秒前
one完成签到 ,获得积分10
6秒前
怡然夏之完成签到,获得积分10
7秒前
酷波er应助kim采纳,获得10
8秒前
千影完成签到,获得积分10
8秒前
早睡早起发布了新的文献求助10
8秒前
666发布了新的文献求助10
9秒前
9秒前
ahua完成签到 ,获得积分10
10秒前
xxy完成签到,获得积分10
10秒前
tjcu发布了新的文献求助10
11秒前
虚拟的如霜完成签到,获得积分10
12秒前
可爱的函函应助傅宛白采纳,获得10
12秒前
一二发布了新的文献求助10
12秒前
KevenDing完成签到,获得积分10
12秒前
爆米花应助zongminghao采纳,获得10
13秒前
14秒前
手帕很忙完成签到,获得积分10
14秒前
15秒前
桐桐应助工藤新一采纳,获得10
15秒前
李健的小迷弟应助jzh采纳,获得10
16秒前
16秒前
深情安青应助zhangguo采纳,获得10
16秒前
Lucas应助李明之采纳,获得10
17秒前
cherish完成签到,获得积分10
17秒前
单薄飞莲完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419305
求助须知:如何正确求助?哪些是违规求助? 4534635
关于积分的说明 14145936
捐赠科研通 4451213
什么是DOI,文献DOI怎么找? 2441631
邀请新用户注册赠送积分活动 1433223
关于科研通互助平台的介绍 1410533