清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Achieving Practical and Privacy-Preserving kNN Query over Encrypted Data

计算机科学 加密 信息隐私 查询优化 数据挖掘 计算机安全
作者
Yandong Zheng,Rongxing Lu,Songnian Zhang,Jun Shao,Hui Zhu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (6): 5479-5492 被引量:3
标识
DOI:10.1109/tdsc.2024.3376084
摘要

As one of the most popular queries in big data era, the $k$ nearest neighbors ( $k$ NN) query plays a significant role in various applications, such as medical diagnosis, signal processing, and recommendation systems. Meanwhile, driven by the advancement of the cloud service, an emerging trend among applications is to outsource the dataset and the corresponding $k$ NN query services to the cloud. However, as the cloud is not fully trusted, those applications will face vital privacy concerns, and thus they usually encrypt data before outsourcing them to the cloud. Because encrypted data are outsourced to cloud, the $k$ NN query over encrypted data has become increasingly attractive, and many solutions have been put forth in recent years. However, existing solutions cannot fully satisfy the objects of returning exact query results, protecting database privacy and query privacy, achieving high query efficiency, and imposing low computational costs at the user side. To address these issues, in this paper, we propose a new practical and privacy-preserving $k$ NN query scheme. Specifically, we first refine the general security requirements for the matrix encryption by systematically analyzing existing algorithms. Then, we design a novel asymmetric matrix encryption (AME) to securely achieve Euclidean distance computation and two distances comparison in a single-party and non-interactive way. Then, based on the AME scheme, we propose a privacy-preserving $k$ NN query scheme, in which a max-heap of size $k$ is used to accelerate query efficiency. Detailed security analysis shows that our proposed scheme is really privacy-preserving. In addition, extensive performance evaluations are conducted, and the results demonstrate that our proposed scheme is also highly efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助容若采纳,获得10
2秒前
小宏完成签到,获得积分10
4秒前
两个榴莲完成签到,获得积分0
1分钟前
Hello应助容若采纳,获得10
1分钟前
千里草完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
隐形曼青应助容若采纳,获得10
2分钟前
斯文败类应助研友_拓跋戾采纳,获得10
2分钟前
2分钟前
bsmark发布了新的文献求助10
2分钟前
3分钟前
爆米花应助bsmark采纳,获得10
3分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
桐桐应助容若采纳,获得10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
加贝完成签到 ,获得积分10
4分钟前
毛毛完成签到,获得积分10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
ph完成签到 ,获得积分10
5分钟前
隐形曼青应助容若采纳,获得10
5分钟前
5分钟前
bsmark发布了新的文献求助10
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
6分钟前
爆米花应助容若采纳,获得10
6分钟前
ximitona完成签到,获得积分10
6分钟前
ximitona发布了新的文献求助10
6分钟前
7分钟前
shi发布了新的文献求助10
7分钟前
1762120完成签到,获得积分10
7分钟前
vpothello发布了新的文献求助30
7分钟前
李爱国应助容若采纳,获得10
8分钟前
vpothello完成签到,获得积分10
8分钟前
脑洞疼应助容若采纳,获得10
8分钟前
9分钟前
小马甲应助容若采纳,获得10
9分钟前
星辰大海应助欧皇采纳,获得10
9分钟前
量子星尘发布了新的文献求助100
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889508
求助须知:如何正确求助?哪些是违规求助? 4173518
关于积分的说明 12952156
捐赠科研通 3934961
什么是DOI,文献DOI怎么找? 2159148
邀请新用户注册赠送积分活动 1177466
关于科研通互助平台的介绍 1082396