新陈代谢
生物
脂质代谢
微囊藻毒素
化学
动物
生物化学
遗传学
蓝藻
细菌
作者
Yilin Shu,Huiling Jiang,Xiaohua Gao,Pei Hong,Qi Wang,Yuefei Ruan,Hailong Wu,Jun He
标识
DOI:10.1021/acs.est.4c12957
摘要
Disruption of lipid homeostasis in aquatic animals poses serious health risks, including tissue damage and systemic metabolic dysfunction. The precise mechanisms by which microcystin-LR, a potent cyanotoxin, disrupts lipid metabolism in amphibian tadpoles remain unclear. In this study, tadpoles (Pelophylax nigromaculatus) were exposed to MC-LR and fecal microbiota transplantation (FMT) experiments were performed to investigate whether or how MC-LR at environmental concentrations interfered with tadpole lipid metabolism from the perspective of the gut microbiota-gut-liver axis. Following exposure, the liver exhibited significant inflammation, hypertrophy, and fibrosis, accompanied by elevated serum lipid levels. Furthermore, the expression levels of the farnesoid X receptor (FXR), a nuclear receptor, were significantly downregulated. Molecular docking and molecular dynamics simulations indicated a strong and stable binding between FXR and MC-LR. Moreover, MC-LR suppressed liver FXR expression or activity, triggering: (1) upregulation of sterol regulatory element-binding protein 1 (SREBP1)-mediated triglyceride (TG) synthesis, (2) inhibition of free fatty acid (FFA) β-oxidation, and (3) activation of SREBP2-dependent bile acid biosynthesis. Moreover, MC-LR altered the composition of gut microbiota and specific bile acid levels (e.g., taurocholic acid and glycochenodeoxycholic acid) in the gut, thereby interfering with hepatic lipid metabolism, as evidenced by FMT-induced hepatic lipid accumulation in recipient tadpoles. These findings identify FXR as a potentially key molecular target for MC-LR and suggest that changes in bile acid levels of intestinal microbiota metabolism also may be an important pathway driving hepatic lipid dysregulation in amphibians exposed to environmental concentrations of MC-LR.
科研通智能强力驱动
Strongly Powered by AbleSci AI