清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transformer model based on Sonazoid contrast‐enhanced ultrasound for microvascular invasion prediction in hepatocellular carcinoma

接收机工作特性 邦费罗尼校正 肝细胞癌 医学 超声波 随机森林 逻辑回归 置信区间 预测建模 放射科 核医学 数学 统计 人工智能 计算机科学 内科学
作者
Qiong Qin,Jinshu Pang,J H Li,Ruizhi Gao,Rong Wen,Yuquan Wu,Li Liang,Qiao Que,Changwen Liu,Jinbo Peng,Yun Lv,Yun He,Peng Lin,Hong Yang
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17895
摘要

Abstract Background Microvascular invasion (MVI) is strongly associated with the prognosis of patients with hepatocellular carcinoma (HCC). Purpose To evaluate the value of Transformer models with Sonazoid contrast‐enhanced ultrasound (CEUS) in the preoperative prediction of MVI. Methods This retrospective study included 164 HCC patients. Deep learning features and radiomic features were extracted from arterial and Kupffer phase images, alongside the collection of clinicopathological parameters. Normality was assessed using the Shapiro–Wilk test. The Mann‒Whitney U ‐test and least absolute shrinkage and selection operator algorithm were applied to screen features. Transformer, radiomic, and clinical prediction models for MVI were constructed with logistic regression. Repeated random splits followed a 7:3 ratio, with model performance evaluated over 50 iterations. The area under the receiver operating characteristic curve (AUC, 95% confidence interval [CI]), sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), decision curve, and calibration curve were used to evaluate the performance of the models. The DeLong test was applied to compare performance between models. The Bonferroni method was used to control type I error rates arising from multiple comparisons. A two‐sided p ‐value of < 0.05 was considered statistically significant. Results In the training set, the diagnostic performance of the arterial‐phase Transformer (AT) and Kupffer‐phase Transformer (KT) models were better than that of the radiomic and clinical (Clin) models ( p < 0.0001). In the validation set, both the AT and KT models outperformed the radiomic and Clin models in terms of diagnostic performance ( p < 0.05). The AUC (95% CI) for the AT model was 0.821 (0.72–0.925) with an accuracy of 80.0%, and the KT model was 0.859 (0.766–0.977) with an accuracy of 70.0%. Logistic regression analysis indicated that tumor size ( p = 0.016) and alpha‐fetoprotein (AFP) ( p = 0.046) were independent predictors of MVI. Conclusions Transformer models using Sonazoid CEUS have potential for effectively identifying MVI‐positive patients preoperatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆上飞完成签到,获得积分10
18秒前
清脆的大开完成签到,获得积分10
27秒前
chcmy完成签到 ,获得积分0
42秒前
ii完成签到 ,获得积分10
51秒前
汉堡包应助Milo采纳,获得10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
蒲公英完成签到 ,获得积分10
1分钟前
绿色心情完成签到 ,获得积分10
1分钟前
newmoon完成签到 ,获得积分10
1分钟前
青水完成签到 ,获得积分10
1分钟前
Ecokarster完成签到,获得积分10
1分钟前
Tumumu完成签到,获得积分10
2分钟前
禾页完成签到 ,获得积分10
2分钟前
2分钟前
手术刀完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助开心的雅柏采纳,获得10
2分钟前
如意无施发布了新的文献求助10
2分钟前
共享精神应助如意无施采纳,获得10
3分钟前
creep2020完成签到,获得积分10
3分钟前
所所应助hanj采纳,获得10
3分钟前
dracovu完成签到,获得积分10
3分钟前
lanxinge完成签到 ,获得积分10
3分钟前
wenbinvan完成签到,获得积分0
4分钟前
英俊的铭应助缥缈傲南采纳,获得10
4分钟前
超级的飞飞完成签到,获得积分10
4分钟前
柒八染完成签到 ,获得积分10
4分钟前
COSMAO应助耕牛热采纳,获得10
4分钟前
5分钟前
zpc猪猪完成签到,获得积分10
5分钟前
bo完成签到 ,获得积分10
5分钟前
5分钟前
狄淇儿完成签到,获得积分10
5分钟前
hanj发布了新的文献求助10
5分钟前
彭于晏应助hanj采纳,获得10
6分钟前
文与武完成签到 ,获得积分10
6分钟前
完美世界应助稳重夜绿采纳,获得10
6分钟前
Sunny完成签到,获得积分10
6分钟前
6分钟前
fanboyz完成签到 ,获得积分10
6分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091960
求助须知:如何正确求助?哪些是违规求助? 3630693
关于积分的说明 11507654
捐赠科研通 3341874
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904831
科研通“疑难数据库(出版商)”最低求助积分说明 822585