气凝胶
材料科学
多物理
蒸发
太阳能
吸收(声学)
耐久性
水运
热能储存
化学工程
纳米技术
复合材料
环境科学
环境工程
水流
热力学
物理
工程类
有限元法
生物
生态学
作者
Qin Su,Haidi Wu,Suyang Hou,Liping Ye,Yifan Feng,Lei Lu,Bicai Pan,Wancheng Gu,Long‐Cheng Tang,Xuewu Huang,Huaiguo Xue,Jiefeng Gao
标识
DOI:10.1002/advs.202505944
摘要
Abstract Enhancing interfacial evaporation rates and optimizing energy utilization remain critical challenges in solar‐driven steam generation. Natural fiber@MXene‐engineered chitosan aerogels with hierarchically oriented channels to achieve high‐efficiency solar‐driven steam generation are developed. The kapok fiber@MXene core–shell units (MKFs) construct photon‐entrapping topological networks that enhance light absorption while simultaneously reinforcing the aerogel's structural integrity and durability for practical applications. The aerogel's oriented microchannels establish thermodynamic potential gradients, facilitating spontaneous capillary‐driven water replenishment and environmental thermal harvesting. Both experimental results and COMSOL multiphysics simulations systematically demonstrate that hierarchical pore channels enhance water transport, improve solar‐thermal/environmental energy synergy, and promote the downward diffusion of concentrated ions from the evaporation surface, achieving an evaporation rate up to 4.40 kg m −2 h −1 with efficient salt rejection. Long‐term outdoor tests with various corrosive wastewater solutions further validate the aerogel's durability in solar‐driven interfacial evaporation. This study provides a theoretical foundation for understanding the interrelation between solar energy absorption, water transport, and salt diffusion in aerogel evaporators with hierarchical fiber‐pore architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI