IMRMB-Net: A lightweight student behavior recognition model for complex classroom scenarios

计算机科学 人工智能 稳健性(进化) 机器学习 模式识别(心理学) 生物化学 基因 化学
作者
Caihong Feng,Zheng Luo,Dehui Kong,Yunhong Ding,Jiaming Liu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (3): e0318817-e0318817
标识
DOI:10.1371/journal.pone.0318817
摘要

With the continuous advancement of education informatization, classroom behavior analysis has become an important tool to improve teaching quality and student learning outcomes. However, student classroom behavior recognition methods still face challenges such as occlusion, small objects, and environmental interference, resulting in low recognition accuracy and lightweight performance. To address the above problems, this study proposes a lightweight student behavior recognition model based on Inverted Residual Mobile Block (IMRMB-Net). Specifically, this study designs a lightweight feature extraction module, IMRMB, from the images of the backbone network to be able to better capture contextual information and improve the recognition of occluded objects while saving computational resources. Using DySample, the neck network reconsiders the initial sampling position and the moving range of the offset from the point sampling perspective to accurately recognize small object behaviors in course scenes. Meanwhile, a new loss function, Focaler-ShapeIoU, is designed in this study, aiming to improve the learning ability and robustness of the model to different samples thus further solving the occlusion problem. Experiments in UK_Dataset show that IMRMB-Net has high accuracy (mAP@50 = 93.3%, mAP@50:95 = 78.7%) and lightweight performance (FPS = 60.37, Params = 7.32MB, GFLOPs = 23.8G). Meanwhile, this study verifies that IMRMB-Net can effectively solve the occlusion problem in classroom scenarios through experiments on the UK_Dataset and SCB_Dataset occlusion subsets. In addition, this study verifies the generalization ability and the ability to recognize small targets of IMRMB-Net on the VisDrone2021 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到,获得积分20
4秒前
畅快的眼神完成签到 ,获得积分10
6秒前
所所应助ClancyJacky采纳,获得10
8秒前
桐桐应助huangjing采纳,获得10
9秒前
科研通AI5应助wendinfgmei采纳,获得10
15秒前
懒羊羊完成签到 ,获得积分10
19秒前
万能图书馆应助方1111采纳,获得10
20秒前
胡砚之完成签到,获得积分10
22秒前
乐正广山完成签到,获得积分20
22秒前
24秒前
ll完成签到,获得积分10
24秒前
25秒前
25秒前
细心雨兰完成签到 ,获得积分20
26秒前
乐正广山发布了新的文献求助10
28秒前
28秒前
而已发布了新的文献求助10
29秒前
希望天下0贩的0应助Gary采纳,获得10
30秒前
30秒前
32秒前
33秒前
顾矜应助关天木采纳,获得10
35秒前
丘比特应助乐正广山采纳,获得10
35秒前
木木杨发布了新的文献求助10
37秒前
zln完成签到,获得积分20
37秒前
shen完成签到,获得积分10
37秒前
芋圆完成签到 ,获得积分10
39秒前
田boy完成签到,获得积分10
40秒前
42秒前
Alex完成签到,获得积分10
43秒前
华仔应助科研通管家采纳,获得10
46秒前
科目三应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
小二郎应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
小李老博应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
wendinfgmei发布了新的文献求助10
47秒前
纯真的无声完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133