An Integrated AI‐PBPK Platform for Predicting Drug In Vivo Fate and Tissue Distribution in Human and Inter‐Species Extrapolation

基于生理学的药代动力学模型 药代动力学 药品 药物开发 药理学 体内 药物发现 化学 分配系数 分布(数学) 计算生物学 医学 色谱法 生物 数学 生物技术 生物化学 数学分析
作者
Wei Wang,Nannan Wang,Yiyang Wu,Zhuyifan Ye,Liang Zhao,Xianfeng Chen,Defang Ouyang
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:118 (4): 865-875 被引量:4
标识
DOI:10.1002/cpt.3732
摘要

Optimal pharmacokinetic (PK) profile, including tissue distribution, is pivotal for a drug achieving success in clinical trials. Traditionally, PK estimation in early drug development has relied on extensive in vitro and in vivo testing to assess drug‐like properties, a process that is not only costly and time‐consuming but also limited in its ability to evaluate the synergistic effects of multiple properties. This study aims to develop an integrated artificial intelligence (AI) and physiologically based pharmacokinetic (PBPK) platform to rapidly estimate drug in vivo fate based solely on molecular structures. The AI models were trained to predict eight types of key properties (solubility, pKa values, crystal density, intrinsic dissolution rate, apparent permeability, protein unbound fraction, plasma clearance, and tissue partition coefficients for 15 organs), from which the PBPK model forecasted PK curves without further training. The AI‐PBPK approach was validated against human PK data of 71 intravenous and 606 oral administrations collected from the PK‐DB database. The results were robust, with most of the AUC predictions falling within two and threefold error ranges. The AI‐PBPK model also accurately predicted drug organ selectivity, and for drugs exhibiting high plasma clearance, predictions were optimized through an inter‐species extrapolation approach. This study illustrates that the developed modeling strategy adeptly addresses pivotal PK challenges in drug discovery and aligns with contemporary drug development processes. The modeling system can guide candidate selection, advancing more drugs with favorable PK profiles into clinical trials, thereby significantly enhancing the efficiency of drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术牛马发布了新的文献求助10
刚刚
刚刚
刚刚
zz发布了新的文献求助30
刚刚
拼搏迎梦完成签到,获得积分10
刚刚
科研通AI6.1应助贾学冲采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
学术羊发布了新的文献求助10
3秒前
4秒前
季节发布了新的文献求助10
5秒前
沉默的倔驴应助科技墨采纳,获得20
5秒前
CipherSage应助Islet采纳,获得10
6秒前
灵巧汉堡完成签到 ,获得积分10
6秒前
科研通AI6.1应助云淡风轻采纳,获得10
7秒前
7秒前
传奇3应助杏杏采纳,获得10
7秒前
8秒前
斯文败类应助张靖采纳,获得10
8秒前
彭于晏应助惜肉龟采纳,获得10
9秒前
仲滋滋发布了新的文献求助20
9秒前
9秒前
Akim应助huangqqk采纳,获得10
9秒前
酷波er应助无限毛豆采纳,获得10
9秒前
科研通AI6.1应助CXY采纳,获得10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
英俊的铭应助Tiffany采纳,获得10
11秒前
song发布了新的文献求助10
11秒前
11秒前
12秒前
Aryan发布了新的文献求助10
12秒前
13秒前
zz完成签到,获得积分10
13秒前
13秒前
吃肉璇璇发布了新的文献求助10
14秒前
Orange应助hokin33采纳,获得30
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300