Predicting Intraoperative Burst Suppression Using Preoperative EEG and Patient Characteristics

脑电图 突发抑制 医学 麻醉 计算机科学 精神科
作者
Jianxing He,Joël Karel,Marcus L.F. Janssen,Erik D. Gommer,Catherine J. Vossen,Enrique Hortal
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065725500339
摘要

Burst suppression (BS) is an electroencephalogram (EEG) pattern observed in patients undergoing general anesthesia. The occurrence of BS is associated with adverse outcomes such as postoperative delirium, extended recovery time, and increased postoperative mortality. The detection and prediction of BS can help expedite the evaluation of patient conditions, optimize anesthesia administration, and improve patient safety. This study explores the potential for automatic BS detection using intraoperative EEG and BS prediction using preoperative EEG signals and patient characteristics. A dataset comprising 287 patients who underwent carotid endarterectomy procedures at Maastricht University Medical Center+ was analyzed. An EEG toolbox developed by T. Zhan at the Massachusetts Institute of Technology was utilized for the automatic detection/annotation of BS, while five machine learning classifiers were employed to predict BS occurrence using preoperative data. Based on the 160 patients manually annotated by EEG experts (regarding the presence or absence of BS), the automatic detection tool demonstrated an accuracy of 0.75. For the BS prediction task, an initial subset of 120 patients was evaluated, showing modest performance, with the K-nearest neighbors ([Formula: see text]) classifier achieving the best results, with an accuracy of 0.72. Subsequent experiments indicated that increasing the number of patients (by using Zhan's Toolbox to annotate the unlabeled instances), applying SMOTE to balance the training set, and enriching the feature set was beneficial. The final experiment demonstrated a significant improvement, with Random Forest and Gradient Boosting outperforming other classifiers, achieving an accuracy of 0.86 and ROC-AUC of 0.94. Patient characteristics, including type of anesthetic agents, symptoms, age, mean absolute delta power, mean absolute theta power, and cognitive impairment, were identified by an xAI method as important features potentially indicating the predisposition to experience BS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨恋凡尘完成签到,获得积分0
3秒前
朱佳宁完成签到 ,获得积分10
7秒前
Kidmuse完成签到,获得积分10
7秒前
ROMANTIC完成签到 ,获得积分10
8秒前
英勇的红酒完成签到 ,获得积分10
10秒前
独特跳跳糖完成签到 ,获得积分10
11秒前
jianglili完成签到 ,获得积分10
12秒前
自由的信仰完成签到,获得积分10
13秒前
番茄炒西红柿完成签到,获得积分10
17秒前
cdercder应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
cdercder应助科研通管家采纳,获得10
24秒前
24秒前
Hello应助科研通管家采纳,获得10
24秒前
JamesPei应助ira采纳,获得10
29秒前
zxcharm完成签到,获得积分10
39秒前
聪慧芷巧发布了新的文献求助10
42秒前
韩hqf完成签到,获得积分10
42秒前
44秒前
ni完成签到 ,获得积分10
45秒前
nine2652完成签到 ,获得积分10
57秒前
fdpb完成签到,获得积分10
1分钟前
15122303完成签到,获得积分10
1分钟前
空白完成签到 ,获得积分10
1分钟前
炼丹炉完成签到,获得积分10
1分钟前
聪慧芷巧发布了新的文献求助10
1分钟前
宁静致远QY完成签到,获得积分10
1分钟前
笑笑完成签到 ,获得积分10
1分钟前
wo完成签到 ,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
wyw完成签到 ,获得积分10
1分钟前
TE完成签到,获得积分10
1分钟前
李演员完成签到,获得积分10
1分钟前
Loik完成签到,获得积分10
1分钟前
keyantong完成签到,获得积分10
1分钟前
研究生发布了新的文献求助20
1分钟前
sougardenist完成签到 ,获得积分10
1分钟前
呆萌芙蓉完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777699
求助须知:如何正确求助?哪些是违规求助? 3323122
关于积分的说明 10213046
捐赠科研通 3038490
什么是DOI,文献DOI怎么找? 1667412
邀请新用户注册赠送积分活动 798132
科研通“疑难数据库(出版商)”最低求助积分说明 758275