Bolster Spring Visual Servo Positioning Method Based on Depth Online Detection

靠垫 计算机视觉 弹簧(装置) 伺服 计算机科学 人工智能 伺服机构 工程类 控制工程 机械工程
作者
Huanlong Liu,Zhiyu Nie,Yuqi Liu,Jingyu Xu,Hao Tian
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22557
摘要

ABSTRACT The intelligent assembly system for railway wagon bolster springs needs to realize the positioning and grabbing of bolster springs, and also has high requirements for grabbing efficiency. To solve the problem of low efficiency of traditional visual servo positioning methods, an image visual servo (IBVS) control method based on depth online detection is proposed to improve the efficiency of maintenance operations. Based on MobileNetv3 network architecture and ECA attention mechanism, a lightweight object detection ME‐YOLO model is proposed to improve the real‐time positioning efficiency of bolster springs. The training results show that compared with the original YOLOv5s model, the detection accuracy of ME‐YOLO is slightly reduced, but the model size is reduced by 81% and the detection speed is increased by 1.7 times. Taking advantage of the real‐time detection advantages of the depth camera, a visual servo control method based on depth online detection is proposed to speed up the convergence of the IBVS system. A bolster spring grasping robot experimental platform was used to conduct a visual servo bolster spring positioning comparison test. The results show that the proposed ME‐YOLO detection model can meet the grabbing needs of the bolster spring assembly robot system based on IBVS, while reducing the system convergence times by about 35%. The proposed IBVS method based on deep online detection can also further improve system operation efficiency by 7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐完成签到 ,获得积分10
2秒前
916应助纯情的菀采纳,获得30
3秒前
Yolo发布了新的文献求助10
4秒前
pcr163应助哈哈哈采纳,获得100
4秒前
繁荣的凝荷完成签到 ,获得积分10
5秒前
liu完成签到,获得积分10
5秒前
lant0932关注了科研通微信公众号
5秒前
完美世界应助denise采纳,获得10
8秒前
科研通AI2S应助滕皓轩采纳,获得10
9秒前
damnxas完成签到,获得积分10
11秒前
纯情的菀完成签到,获得积分20
13秒前
黑摄会阿Fay完成签到 ,获得积分10
13秒前
13秒前
隐形曼青应助背后秀采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
Hello应助哈哈哈采纳,获得10
17秒前
cleva完成签到,获得积分10
17秒前
wxh发布了新的文献求助20
18秒前
从容芮应助小矿工采纳,获得60
19秒前
21秒前
21秒前
月亮与六便士完成签到,获得积分10
26秒前
CASPERWU发布了新的文献求助10
26秒前
科目三应助蛰伏的小宇宙采纳,获得10
28秒前
CipherSage应助哈哈哈采纳,获得30
29秒前
32秒前
35秒前
36秒前
CASPERWU完成签到,获得积分20
36秒前
NexusExplorer应助随风采纳,获得10
37秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
yangzhuang完成签到,获得积分10
41秒前
41秒前
爆米花应助百年烤鸭店采纳,获得10
41秒前
42秒前
43秒前
哈哈哈发布了新的文献求助10
44秒前
45秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864457
求助须知:如何正确求助?哪些是违规求助? 3406903
关于积分的说明 10651633
捐赠科研通 3130793
什么是DOI,文献DOI怎么找? 1726618
邀请新用户注册赠送积分活动 831873
科研通“疑难数据库(出版商)”最低求助积分说明 780051