已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrating multidimensional features method based on multi-view learning for intelligent fault diagnosis of rolling bearings

断层(地质) 方位(导航) 人工智能 计算机科学 工程类 工程制图 地质学 地震学
作者
Min Wang,Weixia Liu,Jida Ning,Shihang Yu,S.M. Tang,Jiaqi Li
出处
期刊:Engineering Computations [Emerald Publishing Limited]
标识
DOI:10.1108/ec-10-2024-0937
摘要

Purpose The purpose of this study is to improve the accuracy and generalization ability of intelligent fault diagnosis models for rolling bearings under varying operating conditions. By integrating multidimensional features through multi-view learning (MVL) and utilizing Mamba feature fusion, the method aims to address the challenge of data distribution differences that reduce diagnostic accuracy when working conditions change. The approach also incorporates domain adaptation techniques to align source and target domain data, ensuring robust and accurate fault detection. This work seeks to enhance fault diagnosis performance, reduce maintenance costs and ensure operational continuity in industrial environments. Design/methodology/approach This paper proposes an integrating multidimensional feature method based on multi-view learning (IMDF-MVL) for intelligent fault diagnosis of rolling bearings. MVL is used to capture multidimensional fault features, while Mamba feature fusion combines features from different views to enhance the model’s generalization ability. Domain adaptation is applied to align data distributions between source and target domains. Experimental validation is conducted by comparing IMDF-MVL with state-of-the-art methods, demonstrating its superior diagnostic accuracy and robustness under varying conditions. The proposed approach aims to provide an effective solution for real-world industrial fault detection applications. Findings The findings of this study demonstrate that the proposed IMDF-MVL method significantly outperforms existing fault diagnosis models, such as DCTLN, NCNN, InDo-DDM, GMVTDA and RTDGN, in both source and target domain datasets. On the source domain, IMDF-MVL achieves an average diagnostic accuracy of 99.98 and 99.89%, highlighting its high efficiency and stability. In target domain transfer experiments, even without target domain fine-tuning, the method achieves diagnostic accuracies of 93.71 and 63.40%, indicating its robustness under changing operating conditions. These results confirm the method’s ability to maintain diagnostic performance and improve generalization across diverse scenarios. Originality/value The originality of this study lies in the integration of multidimensional feature extraction through multi-view learning (MVL) and Mamba feature fusion, addressing the challenge of fault diagnosis under varying operating conditions. By leveraging domain adaptation techniques, the proposed IMDF-MVL method aligns data distributions between source and target domains, enhancing model generalization. This work contributes to the advancement of intelligent fault diagnosis by providing a robust and effective approach for rolling bearings, with potential applications in other rotating machinery. The method’s ability to maintain high diagnostic accuracy across diverse conditions offers significant value in industrial operation and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气幼珊完成签到 ,获得积分10
1秒前
袁雪蓓完成签到 ,获得积分10
1秒前
大力的宝川完成签到 ,获得积分10
2秒前
wyh3218完成签到 ,获得积分10
3秒前
大方乘云完成签到 ,获得积分10
3秒前
TOJNRU完成签到,获得积分10
3秒前
jojo完成签到 ,获得积分10
5秒前
1111完成签到,获得积分10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
健忘远山完成签到,获得积分10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
路人甲耶耶完成签到 ,获得积分10
7秒前
张小医发布了新的文献求助10
9秒前
自信秋烟完成签到 ,获得积分10
10秒前
江小白完成签到,获得积分0
12秒前
13秒前
xj0806完成签到 ,获得积分10
13秒前
dlahgag完成签到,获得积分20
13秒前
xueshanfeihu完成签到,获得积分10
17秒前
chenchenchen发布了新的文献求助30
18秒前
123完成签到 ,获得积分10
18秒前
19秒前
科研通AI5应助cosimo采纳,获得10
21秒前
Beyond095完成签到 ,获得积分10
21秒前
Paris完成签到 ,获得积分10
22秒前
随机子发布了新的文献求助10
24秒前
赘婿应助chenchenchen采纳,获得10
25秒前
完美世界应助张小医采纳,获得30
26秒前
Yasong完成签到 ,获得积分10
27秒前
歪歪yyyyc完成签到,获得积分10
27秒前
Pamg完成签到 ,获得积分10
29秒前
玛珂巴巴珂完成签到,获得积分10
29秒前
29秒前
hjc完成签到,获得积分10
30秒前
cc完成签到 ,获得积分10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367233
关于积分的说明 10444690
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698028
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848