Wearable fall risk assessment by discriminating recessive weak foot individual

步态 过度拟合 稳健性(进化) 计算机科学 可穿戴计算机 人工智能 一般化 灵敏度(控制系统) 模式识别(心理学) 机器学习 物理医学与康复 可穿戴技术 医学 数学 人工神经网络 生物 工程类 生物化学 基因 数学分析 嵌入式系统 电子工程
作者
Zhen Song,Jianlin Ou,Shibin Wu,Lin Shu,Qi Fu,Xiangmin Xu
出处
期刊:Journal of Neuroengineering and Rehabilitation [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12984-025-01599-8
摘要

Abstract Background Sensor-based technologies have been widely used in fall risk assessment. To enhance the model's robustness and reliability, it is crucial to analyze and discuss the factors contributing to the misclassification of certain individuals, enabling purposeful and interpretable refinement. Methods This study identified an abnormal gait pattern termed “Recessive weak foot (RWF),” characterized by a discontinuous high-risk gait on the weak foot side, observed through weak foot feature space. This condition negatively affected the training and performance of fall risk assessment models. To address this, we proposed a trainable threshold method to discriminate individuals with this pattern, thereby enhancing the model's generalization performance. We conducted feasibility and ablation studies on two self-established datasets and tested the compatibility on two published gait-related Parkinson’s disease (PD) datasets. Results Guided by a customized index and the optimized adaptive thresholds, our method effectively screened out the RWF individuals. Specifically, after fine adaptation, the individual-specific models could achieve accuracies of 87.5% and 73.6% on an enhanced dataset. Compared to the baseline, the proposed two-stage model demonstrated improved performance, with an accuracy of 85.4% and sensitivity of 87.5%. In PD dataset, our method mitigated potential overfitting from low feature dimensions, increasing accuracy by 4.7%. Conclusions Our results indicate the proposed method enhanced model generalization by allowing the model to account for individual differences in gait patterns and served as an effective tool for quality control, helping to reduce misdiagnosis. The identification of the RWF gait pattern prompted connections to related studies and theories, suggesting avenues for further research. Future investigations are needed to further explore the implications of this gait pattern and verify the method's compatibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过眼云烟而已完成签到,获得积分20
刚刚
lazysheep完成签到,获得积分10
刚刚
1秒前
sun完成签到 ,获得积分10
1秒前
美满的馒头完成签到,获得积分10
5秒前
科研通AI5应助Werner采纳,获得10
5秒前
5秒前
Ava应助lazysheep采纳,获得10
6秒前
刚睡醒发布了新的文献求助10
7秒前
7秒前
傻傻的夜柳完成签到 ,获得积分10
12秒前
可积完成签到,获得积分10
14秒前
永毅发布了新的文献求助10
14秒前
16秒前
17秒前
lsw关闭了lsw文献求助
19秒前
五十完成签到 ,获得积分10
19秒前
木木发布了新的文献求助10
20秒前
Eleanor发布了新的文献求助10
22秒前
25秒前
NexusExplorer应助cavendipeng采纳,获得10
28秒前
科研通AI2S应助baolong采纳,获得10
28秒前
31秒前
CodeCraft应助ljdpsy采纳,获得10
32秒前
一路有你完成签到 ,获得积分10
32秒前
弱于一般人类完成签到,获得积分10
32秒前
山猫完成签到,获得积分20
33秒前
revy完成签到,获得积分10
35秒前
keyun发布了新的文献求助10
35秒前
36秒前
善学以致用应助小s采纳,获得10
38秒前
山猫发布了新的文献求助30
38秒前
42秒前
43秒前
东坡发布了新的文献求助10
45秒前
47秒前
liuyuh完成签到,获得积分10
47秒前
xpqiu完成签到,获得积分10
48秒前
慧慧吴发布了新的文献求助30
48秒前
汉堡包应助淡然念双采纳,获得10
49秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132771
求助须知:如何正确求助?哪些是违规求助? 3669454
关于积分的说明 11604108
捐赠科研通 3366325
什么是DOI,文献DOI怎么找? 1849473
邀请新用户注册赠送积分活动 913093
科研通“疑难数据库(出版商)”最低求助积分说明 828438