材料科学
氧化还原
尖晶石
氧气
阴极
密度泛函理论
氧化物
惰性
冶金
计算化学
物理化学
化学
有机化学
作者
Zhenjie Zhang,Yixin Li,Xi Shen,Lu Yang,Chu Zhang,Yuan Liu,Bowen Wang,Chang‐Yang Kuo,Shu‐Chih Haw,Chien‐Te Chen,Chih‐Wen Pao,Hsiao‐Yu Huang,D. J. Huang,Jiangwei Ju,Jun Ma,Zhiwei Hu,Yurui Gao,Xuefeng Wang,Richeng Yu,Zhaoxiang Wang
标识
DOI:10.1002/adma.202505724
摘要
Abstract The irreversible oxygen loss (O‐loss) hinders the application of oxygen redox (O‐redox) cathode material in high‐energy‐density Li/Na‐ion batteries. Although O‐loss is commonly associated with O 2 release, the underlying mechanism remains unclear, which is not a simple surface problem. Herein, the O‐loss/redox behaviors of the layered Li 2 MnO 3 and spinel Li 4 Mn 5 O 12 are comparatively investigated through experiments and density functional theory (DFT) calculations. It shows that the vicious spiral between O─O dimerization and Mn migration drive the void growth, chain‐like structural collapse, and O 2 release in Li 2 MnO 3 . In contrast, the stable spinel framework and inert O in O‐LiMn 3 coordination of Li 4 Mn 5 O 12 break this spiral and trap O 2 within the bulk, ensuring a reversible O‐redox. By atomically compositing Li 4 Mn 5 O 12 with LiNi 0.5 Mn 1.5 O 4 , a novel Co‐free Li‐rich spinel oxide (LRSO) with high energy density (>1000 Wh kg −1 ) is produced. These findings clarify the correlation between structural rearrangement and O‐redox and contribute to the design of advanced O‐redox cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI