生物电子学
光遗传学
材料科学
电池(电)
复合数
能量收集
超级电容器
纳米技术
电子线路
液态金属
电气工程
光电子学
能量(信号处理)
电化学
电极
复合材料
神经科学
工程类
生物传感器
功率(物理)
统计
物理
数学
化学
量子力学
物理化学
生物
作者
D.A. Camargo Barros Rocha,Pedro Alhais Lopes,Paulo Peixoto,Anı́bal T. de Almeida,Mahmoud Tavakoli
标识
DOI:10.1002/adfm.202417053
摘要
Abstract Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm −2 ) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics.
科研通智能强力驱动
Strongly Powered by AbleSci AI