Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王波完成签到 ,获得积分10
2秒前
环妈说了熬夜不好完成签到,获得积分10
3秒前
Quan完成签到,获得积分10
4秒前
naturehome发布了新的文献求助10
5秒前
果粒橙完成签到 ,获得积分10
5秒前
6秒前
6秒前
Huang完成签到 ,获得积分0
6秒前
8秒前
小杭76应助xelloss采纳,获得10
8秒前
Merryonwine完成签到,获得积分10
8秒前
C瓜菌完成签到,获得积分20
9秒前
10秒前
天黑了发布了新的文献求助120
10秒前
豫甘兰发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得30
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
wanci应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
xiaoyue8发布了新的文献求助10
11秒前
ding应助科研通管家采纳,获得30
11秒前
烟花应助科研通管家采纳,获得10
11秒前
gdl应助科研通管家采纳,获得10
11秒前
勿明发布了新的文献求助20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
eric888应助科研通管家采纳,获得150
11秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4976571
求助须知:如何正确求助?哪些是违规求助? 4230430
关于积分的说明 13175907
捐赠科研通 4020680
什么是DOI,文献DOI怎么找? 2199810
邀请新用户注册赠送积分活动 1212390
关于科研通互助平台的介绍 1128465