已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助坚定灯泡采纳,获得10
3秒前
風声鶴唳完成签到 ,获得积分10
3秒前
鲍里斯瓦格完成签到,获得积分20
5秒前
身处人海完成签到,获得积分10
8秒前
领导范儿应助默默冬瓜采纳,获得30
9秒前
绿毛怪完成签到,获得积分10
9秒前
慕容雅柏完成签到 ,获得积分10
11秒前
15秒前
17秒前
Apei完成签到 ,获得积分10
18秒前
科研小白菜完成签到,获得积分10
19秒前
ANG完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
善学以致用应助wonder123采纳,获得10
22秒前
蒸芋芋了发布了新的文献求助10
22秒前
24秒前
cccr02完成签到 ,获得积分10
24秒前
坚定灯泡发布了新的文献求助10
28秒前
Orange应助蔡宇滔采纳,获得10
30秒前
依然灬聆听完成签到,获得积分10
31秒前
liang白开完成签到,获得积分10
31秒前
教生物的杨教授完成签到,获得积分10
32秒前
李健的粉丝团团长应助blue采纳,获得10
34秒前
enen完成签到,获得积分10
35秒前
飘逸初丹完成签到 ,获得积分10
37秒前
37秒前
pinklay完成签到 ,获得积分10
38秒前
成成发布了新的文献求助10
41秒前
43秒前
资格丘二完成签到 ,获得积分10
43秒前
一部船发布了新的文献求助10
48秒前
彭于晏应助笨笨的凌青采纳,获得10
48秒前
50秒前
科研通AI5应助wangzengsong采纳,获得10
52秒前
53秒前
忧伤的真菌完成签到,获得积分10
55秒前
58秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980820
求助须知:如何正确求助?哪些是违规求助? 3524564
关于积分的说明 11221946
捐赠科研通 3261950
什么是DOI,文献DOI怎么找? 1801015
邀请新用户注册赠送积分活动 879582
科研通“疑难数据库(出版商)”最低求助积分说明 807342