Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges

计算机科学 开放式研究 钥匙(锁) 相关性(法律) 可信赖性 数据科学 计算机安全 万维网 政治学 法学
作者
Enrique Tomás Martínez Beltrán,Mario Quiles Pérez,Pedro Miguel Sánchez Sánchez,Sergio López Bernal,Gérôme Bovet,Manuel Gil Pérez,Gregorio Martínez Pérez,Alberto Huertas Celdrán
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2983-3013 被引量:333
标识
DOI:10.1109/comst.2023.3315746
摘要

In recent years, Federated Learning (FL) has gained relevance in training collaborative models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the most common approach in the literature, where a central entity creates a global model. However, a centralized approach leads to increased latency due to bottlenecks, heightened vulnerability to system failures, and trustworthiness concerns affecting the entity responsible for the global model creation. Decentralized Federated Learning (DFL) emerged to address these concerns by promoting decentralized model aggregation and minimizing reliance on centralized architectures. However, despite the work done in DFL, the literature has not (i) studied the main aspects differentiating DFL and CFL; (ii) analyzed DFL frameworks to create and evaluate new solutions; and (iii) reviewed application scenarios using DFL. Thus, this article identifies and analyzes the main fundamentals of DFL in terms of federation architectures, topologies, communication mechanisms, security approaches, and key performance indicators. Additionally, the paper at hand explores existing mechanisms to optimize critical DFL fundamentals. Then, the most relevant features of the current DFL frameworks are reviewed and compared. After that, it analyzes the most used DFL application scenarios, identifying solutions based on the fundamentals and frameworks previously defined. Finally, the evolution of existing DFL solutions is studied to provide a list of trends, lessons learned, and open challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东风完成签到,获得积分10
刚刚
1秒前
牛肉粒哦完成签到,获得积分10
3秒前
4秒前
Wey完成签到,获得积分10
4秒前
zhoujunjie完成签到,获得积分10
4秒前
五六七发布了新的文献求助10
5秒前
5秒前
小青椒应助潇洒的皮卡丘采纳,获得20
5秒前
浮游应助北部第一瞬狙采纳,获得10
6秒前
Licifer发布了新的文献求助10
7秒前
吧啦完成签到,获得积分10
8秒前
wjb是狗完成签到 ,获得积分10
8秒前
开放曼文完成签到,获得积分10
9秒前
9秒前
QTe完成签到,获得积分10
11秒前
12秒前
12秒前
专注的凡蕾完成签到 ,获得积分10
13秒前
13秒前
烟花应助阳先生采纳,获得10
13秒前
火焰迷踪发布了新的文献求助10
14秒前
16秒前
文艺的如娆完成签到,获得积分10
16秒前
17秒前
蔡金桐发布了新的文献求助30
17秒前
www发布了新的文献求助10
17秒前
科研通AI6应助五六七采纳,获得10
17秒前
心想事成完成签到,获得积分10
17秒前
18秒前
万能图书馆应助现实的筮采纳,获得10
19秒前
19秒前
池鱼完成签到,获得积分10
19秒前
19秒前
19秒前
ding应助科研通管家采纳,获得10
19秒前
小满完成签到,获得积分20
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
dreamlightzy应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310126
求助须知:如何正确求助?哪些是违规求助? 4454484
关于积分的说明 13860310
捐赠科研通 4342533
什么是DOI,文献DOI怎么找? 2384591
邀请新用户注册赠送积分活动 1379052
关于科研通互助平台的介绍 1347386