MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 成像生物标志物 神经影像学 神经退行性变 核医学 磁共振成像 疾病 病理 放射科 精神科 生物化学 化学
作者
Christopher Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:2
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer’s Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑的含桃完成签到,获得积分10
2秒前
阿睿发布了新的文献求助10
4秒前
xingyu发布了新的文献求助10
4秒前
蛋挞蛋挞完成签到,获得积分10
5秒前
刘欢发布了新的文献求助10
6秒前
天天快乐应助仁爱裘采纳,获得10
6秒前
李子涵发布了新的文献求助10
6秒前
7秒前
9秒前
纯真的元风完成签到,获得积分10
9秒前
Wei完成签到 ,获得积分10
9秒前
10秒前
安迪宝刚完成签到,获得积分10
11秒前
熊宜浓发布了新的文献求助10
11秒前
香蕉觅云应助xingyu采纳,获得10
12秒前
12秒前
111完成签到,获得积分10
14秒前
tianxie发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
小美完成签到,获得积分10
19秒前
水煮南瓜头完成签到,获得积分10
20秒前
20秒前
九姑娘完成签到 ,获得积分10
20秒前
qiu完成签到,获得积分10
20秒前
多啦a萌发布了新的文献求助10
21秒前
suibiao完成签到 ,获得积分10
22秒前
22秒前
scm应助洪伟采纳,获得30
23秒前
顾矜应助谦让夜香采纳,获得10
23秒前
李子涵发布了新的文献求助10
23秒前
沙子发布了新的文献求助10
25秒前
Eric发布了新的文献求助10
25秒前
xingyu完成签到,获得积分10
25秒前
NexusExplorer应助多啦a萌采纳,获得10
29秒前
爆米花应助wangzai采纳,获得10
30秒前
杨好圆完成签到,获得积分10
30秒前
32秒前
Eric完成签到,获得积分10
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380808
关于积分的说明 10515927
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707492
邀请新用户注册赠送积分活动 821774
科研通“疑难数据库(出版商)”最低求助积分说明 772947