亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI-based Deep Learning Assessment of Amyloid, Tau, and Neurodegeneration Biomarker Status across the Alzheimer Disease Spectrum

医学 生物标志物 阿尔茨海默病 淀粉样蛋白(真菌学) 神经退行性变 神经科学 疾病 病理 生物 生物化学 化学
作者
Christopher O. Lew,Longfei Zhou,Maciej A. Mazurowski,P. Murali Doraiswamy,Jeffrey R. Petrella
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.222441
摘要

Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and APOE status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助破风老司机采纳,获得10
4秒前
34秒前
123456777完成签到 ,获得积分10
45秒前
58秒前
乐乐应助www采纳,获得10
1分钟前
Jeff发布了新的文献求助10
1分钟前
小二郎应助Jeff采纳,获得10
1分钟前
Jeff完成签到,获得积分20
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
1分钟前
1分钟前
欧皇发布了新的文献求助60
2分钟前
欧皇发布了新的文献求助30
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
3分钟前
马马完成签到 ,获得积分10
3分钟前
马马完成签到 ,获得积分10
3分钟前
3分钟前
felix发布了新的文献求助10
3分钟前
韦老虎完成签到,获得积分20
3分钟前
甜甜纸飞机完成签到 ,获得积分10
3分钟前
甜甜的紫菜完成签到 ,获得积分10
4分钟前
任性的馒头应助欧皇采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Zakariaje完成签到,获得积分10
5分钟前
小花排草应助欧皇采纳,获得30
5分钟前
科研通AI2S应助予秋采纳,获得10
6分钟前
6分钟前
欧皇完成签到,获得积分20
6分钟前
Fern完成签到 ,获得积分10
8分钟前
felix发布了新的文献求助10
8分钟前
LIU完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
George发布了新的文献求助30
8分钟前
bkagyin应助科研通管家采纳,获得10
8分钟前
George完成签到,获得积分10
9分钟前
火锅完成签到,获得积分10
9分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162275
求助须知:如何正确求助?哪些是违规求助? 3697781
关于积分的说明 11675066
捐赠科研通 3388441
什么是DOI,文献DOI怎么找? 1858134
邀请新用户注册赠送积分活动 918833
科研通“疑难数据库(出版商)”最低求助积分说明 831695