Strawberry Defect Identification Using Deep Learning Infrared–Visible Image Fusion

人工智能 RGB颜色模型 像素 计算机视觉 计算机科学 模式识别(心理学) 特征(语言学) 图像分辨率 测距 遥感 地理 语言学 电信 哲学
作者
Yuze Lu,Mali Gong,Jing Li,Jianshe Ma
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 2217-2217 被引量:6
标识
DOI:10.3390/agronomy13092217
摘要

Feature detection of strawberry multi-type defects and the ripeness stage faces huge challenges because of color diversity and visual similarity. Images from hyperspectral near-infrared (NIR) information sources are also limited by their low spatial resolution. In this study, an accurate RGB image (with a spatial resolution of 2048×1536 pixels) and NIR image (ranging from 700–1100 nm in wavelength, covering 146 bands, and with a spatial resolution of 696×700 pixels) fusion method was proposed to improve the detection of defects and features in strawberries. This fusion method was based on a pretrained VGG-19 model. The high-frequency parts of original RGB and NIR image pairs were filtered and fed into the pretrained VGG-19 simultaneously. The high-frequency features were extracted and output into ReLU layers; the l1-norm was used to fuse multiple feature maps into one feature map, and area pixel averaging was introduced to avoid the effect of extreme pixels. The high- and low-frequency parts of RGB and NIR were summed into one image according to the information weights at the end. In the validation section, the detection dataset included expanded 4000 RGB images and 4000 NIR images (training and testing set ratio was 4:1) from 240 strawberry samples labeled as mud contaminated, bruised, both defects, defect-free, ripe, half-ripe, and unripe. The detection neural network YOLOv3-tiny operated on RGB-only, NIR-only, and fused image input modes, achieving the highest mean average precision of 87.18% for the proposed method. Finally, the effects of different RGB and NIR weights on the detection results were also studied. This research demonstrated that the proposed fusion method can greatly improve the defect and feature detection of strawberry samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助成就的绮烟采纳,获得30
1秒前
科研通AI5应助111采纳,获得10
5秒前
乐乐应助单纯清采纳,获得10
5秒前
冰火完成签到,获得积分10
9秒前
10秒前
yangting发布了新的文献求助10
10秒前
科研通AI5应助受伤南霜采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得30
11秒前
han应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
柯罗诺斯J关注了科研通微信公众号
11秒前
烟花应助科研通管家采纳,获得10
11秒前
12秒前
liang发布了新的文献求助10
14秒前
ss完成签到,获得积分20
14秒前
Orange应助小Q采纳,获得10
14秒前
萨特完成签到,获得积分10
14秒前
所所应助茉莉采纳,获得10
16秒前
梦梦的小可爱完成签到 ,获得积分10
16秒前
18秒前
21秒前
22秒前
23秒前
香蕉觅云应助Yy采纳,获得30
23秒前
ww完成签到,获得积分10
23秒前
我是你宇哥21完成签到,获得积分10
24秒前
付传奎发布了新的文献求助10
24秒前
雨侯发布了新的文献求助10
25秒前
小明完成签到,获得积分10
25秒前
25秒前
小叮当完成签到,获得积分10
26秒前
Zr完成签到,获得积分10
26秒前
内向绿竹应助坚定小松鼠采纳,获得10
27秒前
柚子完成签到 ,获得积分10
27秒前
受伤南霜发布了新的文献求助10
28秒前
小白发布了新的文献求助10
28秒前
28秒前
柯罗诺斯J发布了新的文献求助10
29秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761