Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding

等轴晶 材料科学 成核 枝晶(数学) 冶金 合金 纹理(宇宙学) 热力学 几何学 计算机科学 物理 数学 人工智能 图像(数学)
作者
Chu Han,Ping Jiang,Shaoning Geng,Liangyuan Ren
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:171: 235-251 被引量:8
标识
DOI:10.1016/j.jmst.2023.05.077
摘要

In this study, a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional (3D) space was developed to investigate the complex microstructure evolution in the molten pool during laser welding of Al-Li alloy. To accurately compute mass data within both two and three-dimensional computational domains, three efficient computing methods, including central processing unit parallel computing, adaptive mesh refinement, and moving-frame algorithm, were utilized. Emphasis was placed on the distinctive equiaxed-to-columnar-to-equiaxed transition phenomenon that occurs during the entire solidification process of Al-Li alloy laser welding. Simulation results indicated that the growth distance of columnar grains that epitaxially grew from the base metal (BM) decreased as the nucleation rate increased. As the nucleation rate increased, the morphology of the newly formed grains near the fusion boundary (FB) changed from columnar to equiaxed, and newly formed equiaxed grains changed from having high-order dendrites to no obvious dendrite structure. When the nucleation rate was sufficiently high, non-dendritic equiaxed grains could directly form near the FB, and there was nearly no epitaxial growth from the BM. Additionally, simulation results illustrated the competition among multiple grains with varying orientations that grow in 3D space near the FB. Finally, how equiaxed grain bands develop was elucidated. The equiaxed band not only hindered the growth of early columnar grains but also some of its grains could grow epitaxially to form new columnar grains. These predicted results were in good agreement with experimental measurements and observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
gttlyb完成签到,获得积分10
7秒前
斑比完成签到,获得积分10
8秒前
可爱的函函应助给好评采纳,获得10
9秒前
10秒前
梦~发布了新的文献求助10
10秒前
12秒前
十九完成签到,获得积分10
16秒前
nesire发布了新的文献求助10
18秒前
louyu完成签到 ,获得积分10
21秒前
曾泓跃完成签到 ,获得积分10
21秒前
Hello应助帅气小医仙采纳,获得10
21秒前
阿文321完成签到,获得积分10
21秒前
22秒前
于晨欣发布了新的文献求助10
29秒前
调皮的峻熙完成签到,获得积分10
45秒前
galaxy完成签到 ,获得积分10
50秒前
oasissmz完成签到 ,获得积分10
55秒前
56秒前
金轩完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助淡定的水彤采纳,获得10
1分钟前
1分钟前
cathy-w完成签到,获得积分10
1分钟前
立刻有完成签到 ,获得积分10
1分钟前
爱撒娇的惋清关注了科研通微信公众号
1分钟前
1分钟前
梦~完成签到,获得积分10
1分钟前
自己哭哭完成签到 ,获得积分10
1分钟前
liao完成签到,获得积分10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
jinshijie完成签到 ,获得积分10
1分钟前
1分钟前
Dali完成签到,获得积分10
1分钟前
细雨带风吹完成签到,获得积分10
1分钟前
树树完成签到,获得积分10
1分钟前
bkagyin应助whz采纳,获得10
1分钟前
1分钟前
xxxxxxlp发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776456
求助须知:如何正确求助?哪些是违规求助? 3321941
关于积分的说明 10208249
捐赠科研通 3037248
什么是DOI,文献DOI怎么找? 1666609
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872