DSA-Net: An Attention-Guided Network for Real-Time Defect Detection of Transmission Line Dampers Applied to UAV Inspections

阻尼器 电力传输 计算机科学 光学(聚焦) 特征(语言学) 人工智能 传输(电信) 输电线路 特征提取 卷积(计算机科学) 直线(几何图形) 模式识别(心理学) 实时计算 计算机视觉 工程类 人工神经网络 控制工程 电气工程 哲学 物理 光学 电信 语言学 数学 几何学
作者
Ye Zhang,Botao Li,Jinghao Shang,Xinbo Huang,Pengchao Zhai,Cuicui Geng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-22 被引量:10
标识
DOI:10.1109/tim.2023.3331418
摘要

As a crucial component in power transmission lines, structural defects in dampers can significantly reduce their ability to suppress wire vibrations, posing a serious threat to the transmission line infrastructure. Most existing methods for damper defect detection are based on deep learning. However, these methods face challenges when applied to unmanned aerial vehicle (UAV)-captured images of dampers, as they often appear in complex backgrounds and contain small and densely distributed objects. This research aims to improve the accuracy and speed of damper defect recognition by proposing an attention-guided damper defect detection network called DSA-Net, which includes components such as damper attention (DA), Stile path aggregation network (Stile PAN), and ASFFs. First, to accurately extract the features of the damper while reducing background interference, a novel attention mechanism called DA is introduced, based on the shape of the damper and bidirectional stripe convolution. This mechanism allows the network to focus on key regions in the image without incurring expensive computational costs. Second, the Stile PAN feature fusion structure is employed to integrate shallow-level information of small targets. Finally, a single-layer ASFFs structure is utilized to autonomously learn information about small and densely distributed targets from the detection feature maps output by Stile PAN. On the transmission line damper (TLD) dataset, DSA-Net achieves an mAP0.5 of 0.935, an mAP0.5:0.95 of 0.789, and an inference speed of 7.2 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯情的秋莲关注了科研通微信公众号
刚刚
3秒前
4秒前
4秒前
liu发布了新的文献求助10
6秒前
火星上仰完成签到,获得积分10
6秒前
6秒前
7秒前
szmsnail发布了新的文献求助10
8秒前
茉莉青提发布了新的文献求助10
8秒前
zhl完成签到,获得积分10
9秒前
银河打工人应助asdfqwer采纳,获得10
13秒前
14秒前
15秒前
大模型应助嗯哼采纳,获得10
16秒前
19秒前
天真的青发布了新的文献求助10
21秒前
yujian发布了新的文献求助10
22秒前
乐乐应助大胆绮兰采纳,获得10
25秒前
Owen应助橙橙橙橙橙子采纳,获得10
27秒前
林夕完成签到,获得积分10
30秒前
33秒前
33秒前
34秒前
35秒前
35秒前
嗯哼发布了新的文献求助10
38秒前
39秒前
Quincy完成签到,获得积分10
39秒前
kk发布了新的文献求助20
39秒前
40秒前
袁融发布了新的文献求助10
40秒前
41秒前
Zack发布了新的文献求助10
41秒前
44秒前
阔达碧空发布了新的文献求助10
45秒前
46秒前
kk完成签到,获得积分20
48秒前
caicainuegou发布了新的文献求助10
49秒前
Ava应助阔达碧空采纳,获得10
51秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784026
求助须知:如何正确求助?哪些是违规求助? 3329139
关于积分的说明 10240207
捐赠科研通 3044616
什么是DOI,文献DOI怎么找? 1671150
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759193