Using machine learning algorithms to predict the prognosis of advanced nasopharyngeal carcinoma after intensity-modulated radiotherapy

医学 鼻咽癌 算法 逻辑回归 置信区间 内科学 接收机工作特性 放射治疗 机器学习 阶段(地层学) 肿瘤科 计算机科学 生物 古生物学
作者
Dan Hu,Ying Wang,Genxin Ji,Yu Liu
出处
期刊:Current Problems in Cancer [Elsevier]
卷期号:48: 101040-101040 被引量:4
标识
DOI:10.1016/j.currproblcancer.2023.101040
摘要

The prognosis of advanced nasopharyngeal carcinoma (NPC) patients after intensity-modulated radiotherapy (IMRT) has not been well studied. We aimed to construct prognostic models for advanced NPC patients with stage III-IV after their first treatment with IMRT by using machine learning algorithms and to identify the most important predictors. A total of 427 patients treated in Meizhou People's Hospital in Guangdong province, China from January 1, 2013 to December 12, 2018 were enrolled in this study, with an average follow-up period of 7.16 years from July 2020 to March 2021. Candidate predictors were selected from demographics, clinical features, medical examinations and test results. Three machine learning algorithms were applied to construct advanced NPC prognostic models: logistic regression (LR), decision tree (DT), and random forest (RF). Area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. The important predictors of the optimal model for unfavourable prognosis were identified and ranked. There were 50 (11.7%) NPC-related deaths observed in this study. The mean age of all participants was 49.39±11.29 years, of whom 299 (70.0%) were males. In general, RF showed the best predictive performance with the highest AUC (0.753, 95% CI: 0.609, 0.896), compared to LR (0.736, 95% confidence interval (CI): 0.590, 0.881), and DT (0.720, 95% CI: 0.520, 0.921). The six most important predictors identified by RF were Epstein-Barr virus deoxyribonucleic acid, aspartate aminotransferase, body mass index, age, blood glucose level, and alanine aminotransferase. We proposed RF as a simple and accurate tool for the evaluation of the prognosis of advanced NPC patients after the treatment with IMRT in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
深情安青应助无私的小之采纳,获得10
1秒前
屾哥发布了新的文献求助10
1秒前
梦槐完成签到,获得积分10
2秒前
李端端完成签到,获得积分10
2秒前
ly发布了新的文献求助10
2秒前
Zzoey发布了新的文献求助10
2秒前
KK完成签到 ,获得积分10
3秒前
3秒前
铁豆发布了新的文献求助10
3秒前
娄十三发布了新的文献求助10
4秒前
明理的喵发布了新的文献求助10
4秒前
柚子发布了新的文献求助10
4秒前
无极微光应助张好运采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
六号线发布了新的文献求助10
5秒前
望语枳完成签到,获得积分10
5秒前
潮汐发布了新的文献求助10
5秒前
Haisi完成签到,获得积分10
5秒前
安静的行天完成签到,获得积分10
5秒前
6秒前
你是谁完成签到,获得积分10
6秒前
专注慕晴完成签到,获得积分10
7秒前
喜悦的白猫完成签到,获得积分20
7秒前
华仔应助小筱采纳,获得10
8秒前
微风完成签到,获得积分10
8秒前
9秒前
9秒前
ding应助Cgy采纳,获得10
10秒前
NE关闭了NE文献求助
10秒前
屾哥完成签到,获得积分10
10秒前
yun给yun的求助进行了留言
11秒前
11秒前
何必在乎发布了新的文献求助10
12秒前
斧王完成签到,获得积分10
12秒前
xiaowan发布了新的文献求助20
12秒前
aiai发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534