Using machine learning algorithms to predict the prognosis of advanced nasopharyngeal carcinoma after intensity-modulated radiotherapy

医学 鼻咽癌 算法 逻辑回归 置信区间 内科学 接收机工作特性 放射治疗 机器学习 阶段(地层学) 肿瘤科 计算机科学 生物 古生物学
作者
Dan Hu,Ying Wang,Genxin Ji,Yu Liu
出处
期刊:Current Problems in Cancer [Elsevier BV]
卷期号:48: 101040-101040
标识
DOI:10.1016/j.currproblcancer.2023.101040
摘要

The prognosis of advanced nasopharyngeal carcinoma (NPC) patients after intensity-modulated radiotherapy (IMRT) has not been well studied. We aimed to construct prognostic models for advanced NPC patients with stage III-IV after their first treatment with IMRT by using machine learning algorithms and to identify the most important predictors. A total of 427 patients treated in Meizhou People's Hospital in Guangdong province, China from January 1, 2013 to December 12, 2018 were enrolled in this study, with an average follow-up period of 7.16 years from July 2020 to March 2021. Candidate predictors were selected from demographics, clinical features, medical examinations and test results. Three machine learning algorithms were applied to construct advanced NPC prognostic models: logistic regression (LR), decision tree (DT), and random forest (RF). Area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. The important predictors of the optimal model for unfavourable prognosis were identified and ranked. There were 50 (11.7%) NPC-related deaths observed in this study. The mean age of all participants was 49.39±11.29 years, of whom 299 (70.0%) were males. In general, RF showed the best predictive performance with the highest AUC (0.753, 95% CI: 0.609, 0.896), compared to LR (0.736, 95% confidence interval (CI): 0.590, 0.881), and DT (0.720, 95% CI: 0.520, 0.921). The six most important predictors identified by RF were Epstein-Barr virus deoxyribonucleic acid, aspartate aminotransferase, body mass index, age, blood glucose level, and alanine aminotransferase. We proposed RF as a simple and accurate tool for the evaluation of the prognosis of advanced NPC patients after the treatment with IMRT in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuzihao发布了新的文献求助30
1秒前
小马甲应助小雒雒采纳,获得10
1秒前
汉堡包应助忧郁难胜采纳,获得10
2秒前
sy发布了新的文献求助10
4秒前
jenningseastera应助浮华采纳,获得10
4秒前
如沐春风发布了新的文献求助10
6秒前
hull完成签到,获得积分10
7秒前
贪玩丸子完成签到 ,获得积分10
8秒前
8秒前
9秒前
hhuajw完成签到,获得积分10
9秒前
桐桐应助要减肥的飞松采纳,获得10
9秒前
10秒前
10秒前
yuaner完成签到,获得积分10
11秒前
11秒前
11秒前
Orange应助星梦采纳,获得10
12秒前
xiaoxiao发布了新的文献求助10
13秒前
情怀应助默默毛豆采纳,获得10
13秒前
忧郁难胜发布了新的文献求助10
14秒前
小雒雒发布了新的文献求助10
14秒前
yuaner发布了新的文献求助10
14秒前
15秒前
17秒前
Sylvia_J完成签到 ,获得积分10
17秒前
香蕉觅云应助化工葫芦娃采纳,获得10
17秒前
谦让蜜蜂发布了新的文献求助10
18秒前
二樊发布了新的文献求助50
18秒前
19秒前
19秒前
hugeng完成签到,获得积分10
20秒前
Ava应助剪影改采纳,获得10
22秒前
22秒前
刘一一发布了新的文献求助10
22秒前
陆千万发布了新的文献求助10
23秒前
赘婿应助舒服的画板采纳,获得10
23秒前
23秒前
英姑应助hugeng采纳,获得10
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268