Tumor detection under cystoscopy with transformer-augmented deep learning algorithm

计算机科学 膀胱镜检查 深度学习 人工智能 膀胱癌 变压器 试验装置 编码器 棱锥(几何) 算法 模式识别(心理学) 癌症 医学 数学 病理 电压 物理 内科学 操作系统 量子力学 替代医学 几何学
作者
Jia Xiao,Eugene Shkolyar,Mark A Laurie,Okyaz Eminaga,Joseph C. Liao,Xing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (16): 165013-165013
标识
DOI:10.1088/1361-6560/ace499
摘要

Abstract Objective. Accurate tumor detection is critical in cystoscopy to improve bladder cancer resection and decrease recurrence. Advanced deep learning algorithms hold the potential to improve the performance of standard white-light cystoscopy (WLC) in a noninvasive and cost-effective fashion. The purpose of this work is to develop a cost-effective, transformer-augmented deep learning algorithm for accurate detection of bladder tumors in WLC and to assess its performance on archived patient data. Approach. ‘CystoNet-T’, a deep learning-based bladder tumor detector, was developed with a transformer-augmented pyramidal CNN architecture to improve automated tumor detection of WLC. CystoNet-T incorporated the self-attention mechanism by attaching transformer encoder modules to the pyramidal layers of the feature pyramid network (FPN), and obtained multi-scale activation maps with global features aggregation. Features resulting from context augmentation served as the input to a region-based detector to produce tumor detection predictions. The training set was constructed by 510 WLC frames that were obtained from cystoscopy video sequences acquired from 54 patients. The test set was constructed based on 101 images obtained from WLC sequences of 13 patients. Main results. CystoNet-T was evaluated on the test set with 96.4 F1 and 91.4 AP (Average Precision). This result improved the benchmark of Faster R-CNN and YOLO by 7.3 points in F1 and 3.8 points in AP. The improvement is attributed to the strong ability of global attention of CystoNet-T and better feature learning of the pyramids architecture throughout the training. The model was found to be particularly effective in highlighting the foreground information for precise localization of the true positives while favorably avoiding false alarms Significance. We have developed a deep learning algorithm that accurately detects bladder tumors in WLC. Transformer-augmented AI framework promises to aid in clinical decision-making for improved bladder cancer diagnosis and therapeutic guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助JiangHan采纳,获得10
1秒前
肖溪发布了新的文献求助10
1秒前
heyheybaby发布了新的文献求助10
1秒前
1秒前
111111完成签到,获得积分10
2秒前
斯文败类应助五木采纳,获得10
2秒前
水刃木发布了新的文献求助20
3秒前
滴滴哒要毕业完成签到 ,获得积分10
3秒前
wanci应助carpybala采纳,获得10
5秒前
多吃青菜发布了新的文献求助10
5秒前
7秒前
情怀应助虚心岂愈采纳,获得10
7秒前
carol0705完成签到,获得积分10
8秒前
8秒前
所所应助文光采纳,获得10
8秒前
NexusExplorer应助苗条的晓夏采纳,获得10
9秒前
从容梦玉完成签到 ,获得积分10
10秒前
善学以致用应助weishao采纳,获得10
11秒前
heyheybaby完成签到,获得积分10
11秒前
12秒前
李爱国应助清脆的夜白采纳,获得10
12秒前
12秒前
李健应助伏坎采纳,获得10
12秒前
科研通AI5应助zdm采纳,获得20
12秒前
科研螺丝发布了新的文献求助10
14秒前
15秒前
琪琪完成签到,获得积分10
16秒前
士艳完成签到,获得积分10
16秒前
天阳完成签到,获得积分10
16秒前
16秒前
单薄怜寒完成签到 ,获得积分10
16秒前
carpybala发布了新的文献求助10
17秒前
ltt发布了新的文献求助10
17秒前
18秒前
我真服了完成签到 ,获得积分10
18秒前
传统的孤丝完成签到 ,获得积分10
19秒前
20秒前
20秒前
dhdafwet发布了新的文献求助10
21秒前
CA发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797313
求助须知:如何正确求助?哪些是违规求助? 3342739
关于积分的说明 10312854
捐赠科研通 3059478
什么是DOI,文献DOI怎么找? 1678895
邀请新用户注册赠送积分活动 806277
科研通“疑难数据库(出版商)”最低求助积分说明 763043