Structural Defect Detection Technology of Transmission Line Damper Based on UAV Image

阻尼器 电力传输 输电线路 振动 人工智能 分割 工程类 计算机科学 计算机视觉 特征提取 图像分割 结构工程 声学 电气工程 物理 电信
作者
Xinbo Huang,Yiqun Wu,Ye Zhang,Botao Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:18
标识
DOI:10.1109/tim.2022.3228008
摘要

Overhead transmission lines suffer from extended exposure to harsh weather conditions. Metal dampers, a crucial protective fitting in the line, can effectively suppress the conductor's vibration energy and prevent Aeolian vibration and ice shedding. To ensure the safety of operation of the damper, we are proposing a detection method for structural defect damper based on spatial relationship. First, the unmanned aerial vehicle (UAV) aerial damper images are processed with relative total variation (RTV) transform to obtain an enhanced image with a smooth texture and prominent foreground main structure. Second, the enhanced image is corrected by rotation so that the conductor remains horizontal. Next, based on the endpoint coordinates of the conductor, a foreground preselection box for improved GrabCut segmentation is automatically generated to extract the object dampers. Finally, the spatial relationship between the damper components in the segmentation results is regarded as the motive force of the damper structural defect diagnosis model to detect damage, inversion, slight, and serious deformation defects in sequence. We analyzed the performance of the proposed method through actual field tests, and the results demonstrated that the identification accuracy of the method is 95.76% when applied to a small sample set, which is higher than other existing methods based on traditional image techniques and deep learning defect detection, and can effectively identify different structural defects of dampers and provide reliable data for transmission line condition monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
才啊完成签到,获得积分10
1秒前
1秒前
2秒前
背后的夜云完成签到,获得积分20
2秒前
会编程真是太好了完成签到 ,获得积分10
3秒前
珂儿完成签到 ,获得积分10
3秒前
zhuxd完成签到,获得积分10
5秒前
科研通AI5应助987采纳,获得10
5秒前
5秒前
阔达碧空发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
茉莉青提发布了新的文献求助10
9秒前
绿色心情发布了新的文献求助10
9秒前
10秒前
10秒前
林狗发布了新的文献求助10
10秒前
少年愁完成签到,获得积分10
11秒前
12秒前
科研通AI5应助机智乐菱采纳,获得10
13秒前
灰色发布了新的文献求助10
15秒前
FashionBoy应助阔达碧空采纳,获得10
15秒前
妮妮发布了新的文献求助10
17秒前
zouyangmingjia完成签到,获得积分10
19秒前
20秒前
24秒前
feiluyzu完成签到,获得积分20
25秒前
正月初九完成签到,获得积分10
26秒前
Gesj发布了新的文献求助10
26秒前
wwww完成签到,获得积分10
27秒前
无花果应助zhaoyg采纳,获得10
27秒前
玖玖发布了新的文献求助10
29秒前
机智乐菱发布了新的文献求助10
30秒前
科研通AI5应助wwww采纳,获得10
30秒前
科研通AI5应助妮妮采纳,获得10
32秒前
35秒前
36秒前
xiaozhang完成签到 ,获得积分10
37秒前
李大姐发布了新的文献求助10
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783986
求助须知:如何正确求助?哪些是违规求助? 3329119
关于积分的说明 10240158
捐赠科研通 3044540
什么是DOI,文献DOI怎么找? 1671121
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759192