已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mask-Aware Pseudo Label Denoising for Unsupervised Vehicle Re-Identification

计算机科学 人工智能 模式识别(心理学) 离群值 特征提取 一致性(知识库) 噪音(视频) 滤波器(信号处理) 降噪 特征学习 鉴定(生物学) 特征(语言学) 无监督学习 数据挖掘 机器学习 计算机视觉 图像(数学) 生物 植物 哲学 语言学
作者
Zefeng Lu,Ronghao Lin,Qiaolin He,Haifeng Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4333-4347 被引量:19
标识
DOI:10.1109/tits.2022.3233565
摘要

As a significant part of Intelligent Transportation System (ITS), vehicle Re-Identification (Re-ID) aims to retrieve all target vehicle images captured from non-overlapping cameras. Though the Re-ID methods based on supervised learning have achieved rapid progress, they are still difficult to be applied in real scenarios due to the domain bias between the training set and real scenarios. Recently, methods based on unsupervised learning have been proposed to address the problem of domain bias by exploring techniques of pseudo-label generation. However, these methods suffer from pseudo-label noise. To solve this problem, we propose the Mask-Aware Pseudo Label Denoising framework (MAPLD) consisting of three key components, i.e., Mask-Aware Feature Extraction (MAFE), Adaptive Threshold Neighborhood Consistency (ATNC), and Compact Loss (CL). Firstly, the MAFE is proposed to improve the distinguishability of feature representation and widen the gap in feature space among vehicles with different IDs. Next, the ATNC is introduced to filter out pseudo-label noise of hard negative samples by comparing the image ID of the samples in their neighborhood set i.e., neighborhood consistency. Moreover, the threshold of neighborhood consistency is adaptively adjusted according to feature similarity ranking, which is robust to hyper-parameter variation. Finally, consisting of regression term and compact term, the CL is designed to drive the cluster more compact and alleviate the impact of outliers of hard positive samples. Extensive experiments on VeRi-776 and VeRi-Wild datasets demonstrate that MAPLD can generate reliable pseudo-labels and achieve superior performance in unsupervised target-only and unsupervised domain adaptation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
展七完成签到,获得积分10
1秒前
打打应助展七采纳,获得10
4秒前
超级小熊猫完成签到 ,获得积分10
4秒前
糯米糍完成签到,获得积分10
5秒前
lwm不想看文献完成签到 ,获得积分10
6秒前
没有昵称发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
无问完成签到,获得积分10
13秒前
斯文败类应助斯文啊斯文采纳,获得10
14秒前
Hello应助蚂蚁Y嘿采纳,获得10
19秒前
早睡能长个完成签到,获得积分10
21秒前
cc应助科研通管家采纳,获得10
23秒前
Magali应助科研通管家采纳,获得30
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
HOO发布了新的文献求助10
28秒前
Seciy完成签到 ,获得积分10
29秒前
如意的芷天完成签到,获得积分10
30秒前
李李李李李完成签到,获得积分10
32秒前
斯文啊斯文完成签到,获得积分20
35秒前
Mulee完成签到,获得积分20
36秒前
壮观的谷冬完成签到 ,获得积分10
36秒前
AFM完成签到 ,获得积分10
36秒前
37秒前
pcr163应助Suchus采纳,获得200
37秒前
ztayx完成签到 ,获得积分10
38秒前
栗子味的茶完成签到 ,获得积分10
41秒前
蚂蚁Y嘿完成签到,获得积分10
41秒前
蚂蚁Y嘿发布了新的文献求助10
43秒前
lily完成签到,获得积分10
46秒前
46秒前
DarwinZC发布了新的文献求助10
48秒前
49秒前
小丸子完成签到,获得积分10
49秒前
852应助pop采纳,获得10
50秒前
怡崽发布了新的文献求助10
52秒前
小河向东流给小河向东流的求助进行了留言
53秒前
小狗发布了新的文献求助10
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042