微尺度化学
超流氦-4
物理
非线性系统
波浪水槽
冲击波
机械
畸形波
过剩
破碎波
光学
波传播
凝聚态物理
量子力学
数学
数学教育
作者
Matthew T. Reeves,Walter W. Wasserman,Raymond A. Harrison,Igor Marinković,Nicole Luu,A. Sawadsky,Yasmine L. Sfendla,Glen I. Harris,Warwick P. Bowen,Christopher G. Baker
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2025-10-23
卷期号:390 (6771): 371-376
被引量:1
标识
DOI:10.1126/science.ady3042
摘要
Shallow-water waves are a notable example of nonlinear hydrodynamics, giving rise to phenomena such as tsunamis and undular waves. These dynamics are typically studied in hundreds-of-meters-long wave flumes. In this work, we demonstrate a chip-scale wave flume, which exploits nanometer-thick superfluid helium films and optomechanical interactions to achieve nonlinearities surpassing those of extreme terrestrial flows. Measurements reveal wave steepening, shock fronts, and solitary wave fission—nonlinear behaviors predicted in superfluid helium but never directly observed. Our approach enables lithography-defined wave flume geometries, optomechanical control of hydrodynamic properties, and orders-of-magnitude faster measurements than terrestrial flumes. This approach combining quantum fluids and nanophotonics provides a platform to explore complex wave dynamics at the microscale.
科研通智能强力驱动
Strongly Powered by AbleSci AI